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Abstract

Equilibrium selection in coordination games hamngrated a large literatel Kandori, Mailath and
Rob [Econometrica 61 (1993) 29] and Young [Econometrica 61 (1993) 57] studied dynamic models
of aggregate behaviour where agents best-respond to observations of population play. Crucially,
infrequent mistakes (“mutations”) allow agents to take actions contrary to current trends and prevent
initial configurations from determing long-run play. An alternative approach is offered here:
Trembles are added to payoffs so that with some probability it is optimal to act against the flow
of play. The long-run distribution of population behaviour is characterised—modes correspond to
stable Bayesian Nash equilibria. Allowing the variance of payoff trembles to vanish (a purification
process) a single equilibrium @ayed almost always in the lorman. Kandori, Mailath, and Rob,
and Young, show that the number of contrary actieguired to escape an equilibrium determines
selection; here, the likelihood that such actions are taken is equally important.
0 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Many games have multiple Nash equilibria. Optimising agents might play a Nash
equilibrium, but which one? Motivated in part by this question, researchers have modelled
the adaptive evolution of play. Kandori, Mailath and Rob (KMR, 1993) and Young (1993)
analysed the periodic strategy revision of boundedly rational players. Revising players
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observe the distribution of either current or historical strategy choices, and choose a myopic
best response. This generates a Markov process that is path dependent: Play will become
locked in to any pure strategy Nash equilibrium. To remove this feature, revising players are
assumed to err with some probability—referred to as a “mutation.” Such mutations allow
the process to move between equilibria, and peamalysis of the long-run distribution of

play, independent from any initial conditions. As the probability of a mutation is allowed

to vanish, this distribution places almositwkight on play corrgzonding to a single Nash
equilibrium. In the class of 2 2 symmetric coordination games, such a selection process
picks the Harsanyi—Selted 988) risk-dominant equilibriumrThis is because a relatively

large number of mutations are required to escape from a risk-dominant equilibrium.

In the KMR-Young framework th probability of a mutation is independent of the state
of play. This plays a crucial réle in the selection process. Bergin and Lipman (1996)
demonstrated that general state dependent mutations can result in the selection of any
equilibrium. Since fully genml results are unavailable, it is suggested that mutation
specifications should derive from reasonable underlying justifications. This paper responds
to this idea. The simple example ofx22 symmetric coordination games is considered.
Payoffs are subject to trembles, yielding a Bayesian game. Errant behaviour, therefore,
is caused by the idiosyncrasy of preferenceésaathan mistaken choices. It follows that
long-run play may be analysed while retaining the use of pure best responses. Furthermore,
the long-run distribution may be partially characterised without the need for vanishing
mutation probabilities: In fact, the modes of this distribution coincide with stable Bayesian
Nash equilibria.

Equilibrium selection with “vanishing mutations” is still possible, via a purification
process. Allowing the variances of payoff trembles to tend to zero at the same rate, the
associated mutation probabilities vanish to zero at different rates. In the sense of Bergin
and Lipman (1996), mutations are (endogenoustgte dependent. In this environment,
equilibrium selection depends upon the likeod of observing a cordry action, as well
as the number of contrary actions needed to escape from a particular Nash equilibrium.
Moreover, the selection criterion applies when the population consists of only two players,
and merely a single mutation is required to escape from an equilibrium.

The approach matches that of Blume (199#)ere mutation pbabilities &cpend upon
the difference in expected payoffs. He describes a sufficient condition of “skew symmetry”
for the selection of a risk-dominant equilibrium. In the context of a Bayesian game, this
condition holds when payoff tremble variances are independent of the strategy profile. The
analysis presented here moves further, by identifying precisely how skew-symmetric the
noise process needs to be.

Others have studied alternative models of state dependent mutations: van Damme and
Weibull (1998) analyse a model where mutations are endogenously derived from agents
making costly attempts to control their “trembling hands.” Foster and Young (1990) have
perhaps the earliest discussion of state-ddpat mutations (although with no reference to
risk-dominance and equilibrium selectioBjinmore and Samuelson (1997) also present a
model with state dependent mutations. Thegageed directly to the specification of the
elements of a tridiagonal Markov matrix & single-revision dynamic and hence their
approach lacks an explicit economic model, but is nonetheless related.
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2. Adaptive play of a Bayesian game

The model is based upon a symmetrig 2 coordination game with payoffs:
1 2 1 2

a c 1 a—c 0
a b or equivalently a—c 0

b d 0 d—b
2 c d 2 0 d—>b
wherea > ¢ andd > b ensure that the game has two pure strategy Nash equilibria
(1,1) and (2, 2). For simplicity, assume that payoffs are generic in the following sense:
dn/(a + d) ¢ Z for n € Z. Without loss of generality, it is assumed that- ¢ > d — b,
ensuring that the equilibriur(L, 1) is risk-dominant (Harsanyi and Selten, 1988). Players
care only about the difference in expected payoffs when making a choice, and hence the
coordination game is strategically equivalent to the pure coordination game on the right
hand side of Eq. (1). It is further without loss of generality to/set ¢ = 0 throughout.
In this formulation, the mixed strategy Nash equilibrium entails mixing probabilities of
[x*, 1 — x*] wherex* =d/(a + d) < 1/2 sincea > d by assumption.

The payoffs: andd represent mean utilities. To generate a Bayesian game, each player
has idiosyncratic payofs andd, generated by the addition of normally and independently
distributed payoff trembles:

a=a+oé&, €a | 0 §a2 p&abd

i e (] ([o Lo "))
The parameters, andg, allow the variance of the tremtséo be strategy profile specific.
Blume (1999, Section 6) offers a similarahdom utility’ approach. In his model any
payoff noise is added directly to the expected payoff difference of the two pure strategies,
rather than to the payoffs from particular strategy profiles. Such a specification is equivalent
to settingo = —1 and¢, = &;. The same observation can also be made of related papers by
Brock and Durlauf (2001) and Blume and Durlauf (2001). The paranseteta common
scaling factor which is allowed to vanish for the limiting results of Section 4. The normal
distribution proves convenient for the subsequent anafyléscrucial property, however,
is the unboundedness of the support, allowing either strategy to be dominant with some
probability.

Play evolves adaptively among a finite populationnoplayers. In a single period,
each individual plays a fixed strategy &wst a randomly selected opponent from the
remaining: — 1 players. The state of play is the number of players using strategy 1, denoted
ze€ Z={0,...,n}. At the end of each period, a randonsiglected player is replaced. The
new entrant is equipped with newly trembled payéffandd. This player observes the

. @

1A degree of freedom may be eliminated without loss of generality by setting &jtherl or&; = 1.

2 For the limiting results as — 0, the key features are the asymptotic properties of the densities and hazard
rates of the disturbances. Thus any other distribution sharing these features should lead to similar results. It is
also worth noting that full generality of trembles, particularly allowing trembles to vary by state, as Bergin and
Lipman (1996) have shown, would lead to inconclusive results.
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strategy distribution among— 1 remaining incumbents and selects a best response. This

is a “one step at a time” dynamic (a birth-death process), similar to the one proposed by
Binmore and Samuelson (1997), but unlike the process of KMR (1993) in which all players

revise together. Although the dynamic is set in discrete time, it would be equivalent to cast
the model in continuous time, and allow individual players to be woken by independent

Poisson alarm clocks and subsequently replaced.

An entrant’s choice depends only upon the current strategy distribution, and hence
the adaptive play dynamic describes a homogeneous Markov chain on the stat& space
Beginning in state, and following the exit of an incumbent, there will be eithet z or
i = z — 1 of the remaining incumbents using strategy 1. Wsei/(n — 1) to denote the
fraction using strategy 1. Against this strategy distribution, the payoffs to pure strategies
1 and 2 arec(a + og,) and (1 — x)(d + o¢gg) respectively. An entrant chooses strategy
1 whenever the first term is larger than the second. Rearranging, this occurs whenever:
(1—x)eq — xg4 < [xa — (L — x)d]/o. The left hand side is normal with zero mean and
variancex22 + (1 — x)2£2 — 2x (1 — x) p&q£4. It follows that the entrant will choose pure
strategy 1 with probability:

Pr[1|x]:q§< xa— (1—x)d )

ov/x262 + (1— x)%2 — 2x(1— x)paa

where @ represents the cumulative distribution function of the standard normal. By
inspection, it is clear that an entrant is more likely to choose strategy 1 wkemd hence

z) is sufficiently high. This fact is reflected in Definition 1, where the notafiohindicates

the smallest integer abowe and|«| indicates the largest integer belaw?

Definition 1. The basins of attraction for strategies 1 and 2 are:
le{[(n—l)x*+l—|,...,n} and Z2={O,...,|_(n—l)x*“.
Thebasin depth faced by an entrant is(x)2 or equivalentlykl.z, where:
—(1-— ]
Kk(x)= xa—(1-xd and «; = /c< ! )

Vx2E2 + (1— x)%2 — 2x(1— x)paa n—1
so that an entrant will choogrire strategy 1 with probabilit (« (x) /o).

The “flow of play” is toward a strategy from states within its basin of attraction. Starting
from z € Z;, an entrant will observe at least= z — 1 incumbents using strategy 1.
Following Definition 1,; =z — 1> [(n — 1)x*] > (n — 1)x*,*and henca =i /(n — 1) >
x*: The expected payoff from strategy 1 is higher than that from strategy 2. Equivalently,
k(x) =«; > 0 and hence Pt | x] > 1/2. Similarly, from a state € Z,, any entrant is
more likely to choose strategy 2. Finally, state: [(n — 1)x*] belongs to neither basin of
attraction. The most likely entrant choidepends upon the identity of the exiting player.

Whereas the basins of attraction reflect the flow of play, the basin depth indexes the
difficulty of moving against that flow. Consider once again a stateZ;. An entrant is

3 More formally [u] =min{k € Z: k >u}and|u] =maxk e Z: k<u}l,u ¢ Z= [u] > |u].
4 By assumptionn — 1)x* does not take an integer value.
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most likely to play strategy 2 when a strategy 1 player exits. In this case, the probability of
a contrary action is simply + @ («; /o) wherei = z — 1. For Iargecl.z, it is highly unlikely
the choice will be made against the flow of play.

The transition probabilities of adaptive play may now be calculated. Write=
Priz,+1 = 7’| z: = z] for the probability of a transition from stateto statez’. A single
player is replaced each period, and hepee = O for |z — /| > 1. For stateg < n, the
probability of a step up is

n—z Kz
Pz,z+1= X q)<_z>
n o

A step up requires the exit of strategy 2 incumbent, which occurs with probability
(n — z)/n. The entrant must choose strategy 1, which occurs with probalility /o).
Similar procedures lead to expressions for other transitions:

Pz.z-1= °x [l— @(KZ71>] and
n o

Poe=r—%x [1— @(ﬁ)] + 5@(“*).
n o n o

3. Long-run behaviour

Adaptive play exhibits path dependence in the short run. An entrant tozstate for
instance, is most likely to choose strategy 1, and hence the process remains in the basin of
attractionZj. In the long run, however, contrary actions against the flow of play allow the
process to escape from a basin of attraction. Formally, the Markov chefgddic, and
its long-run behaviour is independent of amjtial conditions. To see this, first observe
that the process isreducible: There is positive probability of moving between any two
states in a finite number of steps, and hence permanent “lock in” to any state cannot occur.
Second, all states agperiodic: There is positive probability of remaining in a state, and
this prevents the occurrence of establishedes/cThese two features are sufficient for
ergodicity (Grimmett and Stirzaker, 2001).

By the Ergodic Theorem, any finite ergodic Markov chain has a unique stationary
distribution. This is a probability vectofr,],cz satisfying 7, = lim;_ o Pz, = z],
independent of any initial conditions. No mattehere the process starts, in the long run
the process will be in statewith probability r,. The stationary distribution is the unique
solution to the detailed balance equatians=) .., 7. p./;, ¥z € Z. The one-step-a-time
nature of adaptive play ensures that these equations take a particularly simple form:

70 = 70 P00 + 7110, Tp = T Pan + Tn—-1P(n-1n and
Ty =Nz Pzz + M—1P(z—1)z + Tz41Pz+1)z-
Solving these equations yields the unique solution:

q
=S “— where g.= [] pign [] pig-o
jezdi 0<j<z <j<n
T
Tz _ PeADe )

241 Pz(z+1) .
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This familiar form is common to birth-death processes. The final element of Eq. (2) has an
easy interpretation: The long-run relative likelihood of neighbouring states is the relative
probability of jumping backward and forward between them. Employing the explicit
transition probabilitiesdr the adaptive play dynamic yields the following.

Lemma 1. Adaptive play has a unique stationary (ergodic) distribution  satisfying:

st e 1 502 11 L0-0(22). @

ZjeZ i 0<j<z z<j<n

Proof. Substitute the transition probabilities into Eq. (2)a

The distribution characterised by Lemma 1 is related to the Bayesian Nash equilibria
of the underlying stage game. Suppose that a fraction @ (k(x)/o) of incumbent
players are using strategy 1. A strategy 1 player is less likely to exit (with probabjlity
than to enter (with approximate probabili@(x (x)/o)). Similarly, a strategy 2 player
is more likely to exit than to enter. In expectation, the number of strategy 1 players
is growing. ldentical logic suggests that the number of strategy 1 players is likely to
decrease when > @ (k(x)/o). Intuitively, the process is moving toward stable fixed
points of @ (k (x)/o). Such a fixed poink = @ (x(x)/o) is, of course, a Bayesian Nash
equilibrium of the stage game. Lemma 2 describes such equilibria. An equilibrium (and
hence fixed pointx will be denotedstable if it is a downcrossing. Formally, for smadl,
P(Kk(x—€)/o)>x—eandd(x (X +¢€)/o) < X + €. This means that a sequence of best
responses will lead from any point in a neighbourhood tdwardx. An equilibrium will
be denotedinstable if the opposite is true.

Lemma 2. For o sufficiently small, there are three Bayesian Nash equilibria: x; <
Xy < xg. The central BNE X, isunstable, the remaining equilibria are stable. Moreover,
X — 0,Xy —> x*andxy — laso — 0. For o sufficiently large, thereis a unique and
stable BNE x. For a > d < x* < 1/2 this stable BNE satisfiesx > 1/2.

Proof. See Appendix A. O

The correspondence between stable Bame Nash equilibria and the long-run
behaviour of the adaptive ptalynamic is stated formally in Proposition 1, and illustrated
graphically in Fig. 1. Notice that for large enough = 2.25) there is a single
Bayesian Nash equilibrium above the halfway poibt{ 1/2), and the corresponding
ergodic distribution is unimodal. On the other hand, whens sufficient small (for
instancep = 1.25), there are three Bayesian Nash equilibria. Two of these equilibria are
stable (downcrossings), and are associated with the two maxima of the bimodal ergodic
distribution.
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Ergodic

Distributions

Tz

Bayesian Nash
Equilibria

D

=

B

< 4

\»e_«/ = o o=1.25

I

o ---0=175
4 o=225

x = z/n — Share of Strategy 1
Fig. 1. Parameters ate=3,d =2,&, =&; =1, p = 0 andn = 30.
Proposition 1. The local maxima (modes) of the ergodic distribution coincide with stable

Bayesian Nash equilibria of the stage game. The local minima coincide with unstable
Bayesian Nash equilibria. Formally, for sufficiently large n:

K (x) K (x)
<@ > =  Tn) <Tepp and x> @ > = x| > T[xn]-
Asn grows large all weight focuses on a single stable Bayesian Nash equilibrium x:
lim > n.=1 foranye>0.

L[G—en|<z<[(GE+e)n]
Ifa>d, &, =&, and o issufficiently small for there to be three Bayesian Nash equilibria
X1 <Xy < Xy (seeLemma 2), then all weight focuseson xy.

Proof. Take anyx such thatt < @ (k(x)/o),sothatl—x > 1— & (k(x)/o). Then:
T\ xn] _ Prxnl|xn] _ [xn][1— D (k|xnj/0)] N x[1—=D(k(x)/o)]
Trxn) Plxn][xn] (n — anJ)@(KanJ/O) n—oo (1-x)@(k(x)/0o)
Analysis of further limiting behaviouin — oo) is relegated to Appendix A. O

4. Equilibrium selection

KMR (1993) and Young (1993) allovine probability of an error (a mutation) to vanish.
In the limit, the ergodic distribtion places all weight on a sirggktate, and “selects” a pure
strategy Nash equilibrium. The specification considered here involves no errors—players
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best respond against the observed populdtiegquency, contingent on their own payoffs.

The analogue of a mutation is a contrary action taken against the flow of play. Suppose that
a fractionx > x* of observed incumbents are using strategy 1, sosfat > 0. Without

payoff idiosyncrasy, an entrant would cheostrategy 1. With payoff idiosyncrasy, an
entrant will choose the contrary strategy 2 with probability  (k (x) /o). Following

a Harsanyi (1973) purification process  0) ensures that the probability of such a
“mutation” vanishes to zerd.The use of purification to select equilibria generates the
following observations.

The probability of a contrary action differs across states: g9 > «(x) > 0, such
probabilities satisfy - @ (k(y)/o) <1 — ®(k(x)/o), and are in some sense state
dependent. Bergin and Lipm#h996), however, employed a more stringent definition of
state dependence. They demonstrated thatrttieat feature is the rate at which a mutation
probability vanishes to zero in the selection process. Takirg 0:

1-dw)/0) _ ¢uc()/0)/A=Pk()/0) $l(x)/o)
1-dk(y)/o)  dk(x)/o)/(1—Pk(x)/a) ~ ¢k(y)/o)
k(y)/o < K(x)z—x(y)z)
— expy —

k(x)/o 202
— 00.

The first equality follows from multiplying and dividing both numerator and denominator

by the normal density. This yields a ratio of hazard rates as the first term, and a ratio of
densities as the second term. The second step follows from recognising that the hazard rate
of the normal distribution is asymptotically linear: Formally- [¢ (1)/(1 — @ (u))] — 0

asu — oo, yielding the ratio on the left.The exponential term on the right follows from

the combination of the two normal densities. The third step follows from dominance of
exponential terms in the limit, and thatx)? < « (y)2 by assumption. Notice that the rate

at which the mutation probability dies away to zero is determined by the basinciepth

Hence the endogenously genech mutations meet the definition of state dependence
proposed by Bergin and Lipman (1996).

A further observation is that the model fits into the framework described by Blume
(1999), where the prolbdity of a mutation (the “noise” gecification) depends upon the
expected payoff difference between the strategies. Facing a propertdrstrategy 1
opponents, this differenceds: — d (1 — x), which is a monotonic transformation of The
adaptive play process described here isiafare, a special case of Blume’s specification.
He obtained the following results: When the noise process is “skew symmetric,” meaning
that the mutation probability depends only on the absolute difference in payoffs, then
the risk-dominant equilibrium is selected in the limit. Here, the noise process is skew
symmetric wheneveg, = &;. It remains to investigate selection whep=£ &;. A first

5 Of course, this is only one example of a purificationgass. There are other notions, for example that of
Aumann et al. (1983).
6 Apply I'Hbpital’s rule to obtain
: @ (u) —ub= Iim ¢) —u(l— o)) — Iim 05(14)—1:0'
u—oo| 1— @ (u) u—>00 1—®(u) u—0o —a¢(u)
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step is to establish that only extreme stgtzsresponding to pure Nash equilibria) matter
in the limit.

Lemma 3. Interior states carry no weight in the limit:

z¢{0,n} = lim m,=0.
o—0

Proof. Consider a statee Z1 wherez < n. Note thatc, > 0. Allowing o — oo:

1 1-@
Tz :P(z+l)z=Z+ % n « (Kz/a)_)(),

241 Pz(z+1) n n—z D(k;/0)
which follows since® (x, /o) - 1asc — 0. O

T, <

It follows that lim,_.o(7r0 + 7,) = 1. The relative likelihood of observing these extreme
states is determined by the relative diffiiy of moving between them. Two factors
influence this. The first is thbasin width. This is the number of steps (or mutations)
required to escape from a basin of attraction. Sinte: 1/2, the basinZ; is wider than
Z>. In the models of KMR (1993) and Young (1993) each mutative step is taken with equal
probability. It follows that the strategy with the widest basin of attraction (in this case,
the risk-dominant strategy 13 selected. Here, however, thasin depth is of importance.

Both width and depth together influence the selection process. An extension of Definition 1
reflects these ideas.

Definition 2. Basin volumes are defined a1 =Y., «2 ; andBa =Y "_, k2.

The basin depths and volumes are both illustrated in Fig. 2. The solid line illustrates the
basins of attraction when the payoff tremblesé equal variances. The basin of attraction
for strategy 1 is both wider and deeper. In contrast, the broken line illustrates the case
where the payoff trembles have unequal variances. Whereas theasinarrower, it is
also far deeper. This is because the paya# more volatile, the probability of observing
a contrary action in this basin is much highand hence the basin volume is greater. The
effect of basin volume is demonstrated in the central selection result of the paper.

z = z/n = Population Share of Strategy 1

00 01 02 03 04 05 06 07 08 09 10
! I I I \ I I I I

7 -~
I 4 \‘\~‘~
P -

—k(2)?

— — Eazéd:l
———- & =2and & =0.75

Fig. 2. Basin depths and volumes. Parameters ase8 andd = 2.
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Proposition 2. The strategy with the largest basin volume is selected as o — 0. Formally,
if B > B thenlim,_om, =1andif B, > By thenlim,_.gmg=1.

Proof. Using Lemma 1 take the ratio af, andxg to obtain:

T [l.., 5 @k:/o)  Tliez, Plc-1/0) [Lez, P(k:/0)

70 [la0i@Q=P-1/0))  [liez,(1— Plicz/0)) [1,ez,(1— Plkz-1/0))

The above follows from the caellation of terms such as/n and (n — z)/n, and re-
indexing and separating the products as appropriate. The numerator and denominator of
the first term on the right-hand side both tend to unity as 0. For instance, whene Z1,
reference to Definition 1 confirms that_; > 0. It follows strategy selection is determined

by the second term, where both numerator and denominator tend to zero. Write this term
as

H2622¢(K2/0) Hzezz¢(KZ/G)

Hzezl(l — D (k;-1/0)) B Hzezlﬁb(’czfl/a)

» [liez, ¢ (kz-1/0) /(1 = P(kz-1/0)
[liez,#(z/0) /P (k:/0) ’

The first term is explicitly:

2 _ 2
HHZEZ;SQ(SIEKZij;) — (27.L,)(rz—2f(n—l)x’ﬂ)/2 exp(- ZZEZZ Kz 2(7;2621 Kz—l) ] (4)
€721 -

Consider a typical element in the numerator of the second term. Singe> 0 for

7 € Z1, k;—1/0 — +00 aso — 0. Since the hazard rate of the normal is asymptotically
linear, it follows that liny 0@ (k;—1/0)/(1 — @ (k;—1/0)) = limy_0k,—1/0. A similar
argument holds for the denominator, whege< 0. Hence,

HzeZl dk;-1/0) /(1= P(k;-1/0)) N O_[(n—l)x*] HzeZl Kz—1
Hzezz¢(Kz/U)/¢(Kz/0) on=ln=1x"] Hzezz(_Kz)

which is polynomial ino. The first term, (4), is exponential in. The limit becomes

oc—-0mg o0—0 o 202

—2[(n—1)x* 2 2
lim ™ — lim ( Y 2”)n o Wexp(— Locts e~ Leey K“)

HzeZl Kz—1

% HzeZz(_Kz) ’

The exponential term dominates asymptotically, and hence the limit diverges whenever the
numerator of the fractional term in the exponent is negative. In conclusion:
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. TT,
YokZy>> k2 = lm=— =00 and

o—0 710
z€Z1 z€Z>
. TT
E K22_1< E KZZ = lim =2 =0,
' ’ o—0 70
€21 z€Z>

which is precisely the desired resultD
Proposition 2 yields an immeatie and simple corollary.
Coroallary 1. For n = 2, strategy 1 is selected (lim, .o, = 1) whenever a/&, > d/&,.

Then = 2 case is of interest precisely becaitseorresponds to a situation where the
population size matches the number of players. In this case, the models of KMR (1993) and
Young (1993) do not offer a selection result. Each basin of attraction has a single member,
and hence escape from either requires examtly mutation. Here, however, a selection
result is obtained. This is because thelmbility of a contrary d@ion depends upon the
payoffs and tremble variances of the game. Inithe 2 case, selection is driven entirely
by basin depth and not by basin width. From Corollary 1 itis clear that strategy 1 is selected
whenevek, = &;, since its risk dominance correspondsatse d. Thisis also true for larger
populations.

Corollary 2. Supposethat &, = &;. Strategy 1 is risk-dominant and hence selected.
Proof. See Appendix A. O

When payoffs are trembled in the same way, risk-dominant equilibria continue to be
selected, confirming the analysis of Blume (1999). When trembles are payoff specific
(equivalent to a skew asymmetric noise specification), then either equilibrium may be
selected. The basin volume of Definition 2 captures the relative influence of these factors.
The degree to which asymmetry in tremble variances can overcome the effect of relative
payoff size is illustrated in Fig. 3. To the right of the vertical dotted line, strategy 1
is risk-dominant. When payoff variances are equgl/(§2 — £7) = 1/2) the selection
criterion coincides with risk dominance. As the trembles become more skew asymmetric
(for instance, for relatively Iargeaz) the criterion diverges. The dashed line, for instance,
shows the equilibrium selected far= 5.
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Appendix A. Omitted results

Proof of Lemma 2. Fixed points of® (k(x)/o) are roots off(x) = @ (k(x)/o) — x.
Notice that f'(x) = ¢ (k(x)/o)k'(x)/o — 1. As o — oo, f'(x) — —1 uniformly for

x € [0, 1]. Thus, for sufficiently larger, f(x) is decreasing everywhere. Henféx) only
has one root in the neighbourhoodxo& % Wheno — 0, f(x) > 1—x if x > x™ and
fx) - —x if x < x*, so there cannot be a fixed point unless it is local@ox*, 1}.
Consider the intervdl0, ¢]. For sufficiently small, f(x) is decreasing in this interval.
Moreover, £(0) > 0 and f(¢) < 0. Therefore there is exactly one root in this interval.
A similar argument applies {d —¢, 1]. Now considefx* —¢, x*+¢]. Thenf (x* —¢) <0
and f(x* 4+ ¢) > 0. Again there is at least one root in the inten@l« (x) /o) is strictly
increasing. A fixed point o (x (x) /o) corresponds to a fixed point of its inverse. Local
to x* the derivative of the inverse is less than one. This locality expanasgets small.
Within this region there can be only one fixed point of the inverse and hence in this interval
the root of f (x) is unique. O

Proof of Proposition 1. Take a proportiorx of strategy 1 players and a corresponding
statez = [nx] or z = |nx]. Take logs of Eq. (3) and divide by.

e o) S0

Jj<z

X 1
— Q(x)z/lOg(l—y)@(%) dy—l—/logy(l—@(%)))))dy
0 X

which is an integral approximation similar in spirit to that employed by Young (1998).
Differentiation reveals tha’'(x) =0 & x = @ (k(x) /o). In other words, maxima and
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minimax of Q(x) correspond to Bayesian Nash equilérihis reaffirms the first part of
the proposition. For almostlgayoff specificationsQ (x) has a unique global maximiser
x. For arbitrarily smalk, define

Ac={x€[0,1]: Q(x) > Q(F) —¢}.
For sufficiently smalk, this is a convex neighbourhoodf Ao may be defined similarly.
Now consider the following:

X:zzﬁeA6 24 X:zzﬁeA6 qz S mmz:ﬁeA6 q: #z: % € A¢}
= > X .
Zz:%¢A2€ T Zz:%g{Aze gz MaX.zgn, q: #z:g ¢ Azl
The right-hand term converges to a non-zero number. Taking the left hand term:

MiN;.zea, 4 .o lo
|og|:7ezi| — I’l|: min ﬂ — max ﬂ}
max:zga,, 4z zieA. N iy N

— n[(QR) —€) — (&) — 2¢)| = ne

n—o00

—> OQ.
n—o00

It follows that all weight in the ergodic distribution must accrue in a neighbourhoadd of
It remains to show that = Xy whené, = &;. For sufficiently smalb there are two stable
Bayesian Nash equilibria satisfyiig < 1/2 < Xy (Lemma 2). It is sufficient, therefore,
to show thatt > 1/2. Suppose not, so that< 1/2. Sincer is the unique global maximiser
of Q(x) it must be the case th@(x) > Q(1 — x). Computing the difference of these two
terms:

1-x X

0R)— Q(1—%) = / Iogy(l @(K(y)>> log(1 — )q>( (y))
1-x —x

/logy(l q)( (y)>>dy— |Ogy¢<M>dy
J o J o

1

= k\.;l

1-x
_ / Iog[l_qj('{(y)/a)}dy
) lowa=y/o)

1/2

1—x
"1 Bc(y)/0)] / F—cb(x(y)/a)}
| — =" “|d | — =7 " |d
/0 B — /o) ] y+1/2 i TSy

1/2 1/2

:/|Og_1_q>(K(y)/G)—dy+/log|:1_(p(’c(1_y)/6)j|dy

o@-y/o)| " ") D (k(y)/0)
1/2

/Io 1—¢(K(y)/0)-[1—¢(K(1—y)/0)}d
[P (k(1—y)/0) | P (k(y)/o)
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For this to be positive, it must be true that for some 1/2 the integrand is positive. This
reduces to:
1-@(k(y)/o)>@(k(1—y)/o) & —k()>k1-y)
& —vya+1—-y)d>QA—-y)a—yd
& d>a.
But this is a contradiction, since by assumptios d. O

Proof of Corollary 2. The basin volume condition is

[x*(n—1)] n—1

(ja—(—j—Dd)? 3 (ja—(n—j—Dd)?
= =17 -2

Jj=0 J=Ix*(n=1)]

Consider the right hand term. Make a change of variablen — j — 1 to yield

x*(n—1)] n=1-[x*(n=1)]

(ja—(n— j—1d)? - 3 ((n —k — Lya —kd)?
j2+m—j—-17? K2+ (m—k—1)2

j=0
If strategy 1 is risk-dominant, them> d and[x*(n — 1)] <n — 1— [x*(n — 1)]. The
condition becomes

Wil” (ja—m—j—Dd)?—((n—j—Da—jd?

P+n—j-1?

k=0

j=0
n =D (k= 1 — kd)?
< 2 +(n—k—12
k=Tr (1]

The right-hand side of this expression is positive. Multiply out the numerator in each of the
left-hand terms:

(ja——j—Dd)’ = ((n— j —Da— jd)’ = (j2— (n— j — D?)(a? - d?).

This is negative since? > d2 andj2 < (n — j — 1) for j < [x*(n — 1)]. The inequality
holds, yielding sufficiency. Necessity follows since ik d the same procedure establishes
the dominance of strategy 2.0

Calculation of basin volume for large rn. Figure 3 displays the basin volume selection
criterion for largen. Usings = a/(a + d), ¥ = £2/(£2 + £2) and settingo = 0, the basin
depth is proportional to:
~ 2 O = (1=H(L—x)?
= . A.l
= T A wa— 2 &1

Dividing the basin volume by, obtain

1 1
B 1
71 = Z KZZ—lnjo)o /K(x)zdx O</E(x)2dx
x* x*

z€Z1
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and similarly forB2. An explicit form for the last integral is available:

~ 2 Az—iﬁ—Zkiﬁ+21//2 x—A—=1)
/K(x) dx =x + Tt ) arcta 71/[( 1//)}

+ (= ¥ log(¥x? + (1 — ¥)(1 — x)?) + const

Differentiation of the above yields the expression from Eq. (A.1). This enables the
calculation of the line for — oo in Fig. 3. O
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