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Abstract

Equilibrium selection in coordination games has generated a large literature. Kandori, Mailath and
Rob [Econometrica 61 (1993) 29] and Young [Econometrica 61 (1993) 57] studied dynamic m
of aggregate behaviour where agents best-respond to observations of population play. C
infrequent mistakes (“mutations”) allow agents to take actions contrary to current trends and p
initial configurations from determining long-run play. An alternative approach is offered he
Trembles are added to payoffs so that with some probability it is optimal to act against th
of play. The long-run distribution of population behaviour is characterised—modes corresp
stable Bayesian Nash equilibria. Allowing the variance of payoff trembles to vanish (a purific
process) a single equilibrium isplayed almost always in the longrun. Kandori, Mailath, and Rob
and Young, show that the number of contrary actionsrequired to escape an equilibrium determin
selection; here, the likelihood that such actions are taken is equally important.
 2003 Elsevier Inc. All rights reserved.

JEL classification: C72; C73
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1. Introduction

Many games have multiple Nash equilibria. Optimising agents might play a
equilibrium, but which one? Motivated in part by this question, researchers have mo
the adaptive evolution of play. Kandori, Mailath and Rob (KMR, 1993) and Young (1
analysed the periodic strategy revision of boundedly rational players. Revising p
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observe the distribution of either current or historical strategy choices, and choose a m
best response. This generates a Markov process that is path dependent: Play will
locked in to any pure strategy Nash equilibrium. To remove this feature, revising playe
assumed to err with some probability—referred to as a “mutation.” Such mutations
the process to move between equilibria, and permit analysis of the long-run distribution o
play, independent from any initial conditions. As the probability of a mutation is allo
to vanish, this distribution places almost all weight on play corresponding to a single Nas
equilibrium. In the class of 2× 2 symmetric coordination games, such a selection pro
picks the Harsanyi–Selten (1988) risk-dominant equilibrium. This is because a relative
large number of mutations are required to escape from a risk-dominant equilibrium.

In the KMR–Young framework the probability of a mutation is independent of the st
of play. This plays a crucial rôle in the selection process. Bergin and Lipman (1
demonstrated that general state dependent mutations can result in the selection
equilibrium. Since fully general results are unavailable, it is suggested that muta
specifications should derive from reasonable underlying justifications. This paper res
to this idea. The simple example of 2× 2 symmetric coordination games is consider
Payoffs are subject to trembles, yielding a Bayesian game. Errant behaviour, the
is caused by the idiosyncrasy of preferences rather than mistaken choices. It follows th
long-run play may be analysed while retaining the use of pure best responses. Furth
the long-run distribution may be partially characterised without the need for vani
mutation probabilities: In fact, the modes of this distribution coincide with stable Bay
Nash equilibria.

Equilibrium selection with “vanishing mutations” is still possible, via a purificat
process. Allowing the variances of payoff trembles to tend to zero at the same ra
associated mutation probabilities vanish to zero at different rates. In the sense of
and Lipman (1996), mutations are (endogenously) state dependent. In this environme
equilibrium selection depends upon the likelihood of observing a contrary action, as wel
as the number of contrary actions needed to escape from a particular Nash equil
Moreover, the selection criterion applies when the population consists of only two pl
and merely a single mutation is required to escape from an equilibrium.

The approach matches that of Blume (1999), where mutation probabilities depend upon
the difference in expected payoffs. He describes a sufficient condition of “skew symm
for the selection of a risk-dominant equilibrium. In the context of a Bayesian game
condition holds when payoff tremble variances are independent of the strategy profil
analysis presented here moves further, by identifying precisely how skew-symmet
noise process needs to be.

Others have studied alternative models of state dependent mutations: van Dam
Weibull (1998) analyse a model where mutations are endogenously derived from
making costly attempts to control their “trembling hands.” Foster and Young (1990)
perhaps the earliest discussion of state-dependent mutations (although with no reference
risk-dominance and equilibrium selection). Binmore and Samuelson (1997) also prese
model with state dependent mutations. They proceed directly to the specification of th
elements of a tridiagonal Markov matrix ina single-revision dynamic and hence th
approach lacks an explicit economic model, but is nonetheless related.
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2. Adaptive play of a Bayesian game

The model is based upon a symmetric 2× 2 coordination game with payoffs:

1 2

1
a c

a b

2
b d

c d

or equivalently

1 2

1
a − c 0

a − c 0

2
0 d − b

0 d − b

, (1)

where a > c and d > b ensure that the game has two pure strategy Nash equi
(1,1) and (2,2). For simplicity, assume that payoffs are generic in the following se
dn/(a + d) /∈ Z for n ∈ Z. Without loss of generality, it is assumed thata − c > d − b,
ensuring that the equilibrium(1,1) is risk-dominant (Harsanyi and Selten, 1988). Play
care only about the difference in expected payoffs when making a choice, and hen
coordination game is strategically equivalent to the pure coordination game on the
hand side of Eq. (1). It is further without loss of generality to setb = c = 0 throughout.
In this formulation, the mixed strategy Nash equilibrium entails mixing probabilitie
[x∗,1− x∗] wherex∗ = d/(a + d) < 1/2 sincea > d by assumption.

The payoffsa andd represent mean utilities. To generate a Bayesian game, each
has idiosyncratic payoffs̃a andd̃ , generated by the addition of normally and independe
distributed payoff trembles:

ã = a + σεa

d̃ = d + σεd
where

[
εa

εd

]
∼ N

([
0
0

]
,

[
ξ2
a ρξaξd

ρξaξd ξ2
d

])
.

The parametersξa andξd allow the variance of the trembles to be strategy profile specific1

Blume (1999, Section 6) offers a similar “random utility” approach. In his model an
payoff noise is added directly to the expected payoff difference of the two pure strat
rather than to the payoffs from particular strategy profiles. Such a specification is equ
to settingρ = −1 andξa = ξd . The same observation can also be made of related pape
Brock and Durlauf (2001) and Blume and Durlauf (2001). The parameterσ is a common
scaling factor which is allowed to vanish for the limiting results of Section 4. The no
distribution proves convenient for the subsequent analysis.2 Its crucial property, howeve
is the unboundedness of the support, allowing either strategy to be dominant with
probability.

Play evolves adaptively among a finite population ofn players. In a single period
each individual plays a fixed strategy against a randomly selected opponent from t
remainingn−1 players. The state of play is the number of players using strategy 1, de
z ∈ Z = {0, . . . , n}. At the end of each period, a randomlyselected player is replaced. T
new entrant is equipped with newly trembled payoffsã and d̃ . This player observes th

1 A degree of freedom may be eliminated without loss of generality by setting eitherξa = 1 or ξd = 1.
2 For the limiting results asσ → 0, the key features are the asymptotic properties of the densities and h

rates of the disturbances. Thus any other distribution sharing these features should lead to similar res
also worth noting that full generality of trembles, particularly allowing trembles to vary by state, as Berg
Lipman (1996) have shown, would lead to inconclusive results.
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strategy distribution amongn − 1 remaining incumbents and selects a best response.
is a “one step at a time” dynamic (a birth-death process), similar to the one propos
Binmore and Samuelson (1997), but unlike the process of KMR (1993) in which all pl
revise together. Although the dynamic is set in discrete time, it would be equivalent t
the model in continuous time, and allow individual players to be woken by indepe
Poisson alarm clocks and subsequently replaced.

An entrant’s choice depends only upon the current strategy distribution, and
the adaptive play dynamic describes a homogeneous Markov chain on the state sZ.
Beginning in statez, and following the exit of an incumbent, there will be eitheri = z or
i = z − 1 of the remaining incumbents using strategy 1. Usex = i/(n − 1) to denote the
fraction using strategy 1. Against this strategy distribution, the payoffs to pure stra
1 and 2 arex(a + σεa) and(1 − x)(d + σεd) respectively. An entrant chooses strate
1 whenever the first term is larger than the second. Rearranging, this occurs whe
(1 − x)εd − xεa < [xa − (1 − x)d]/σ . The left hand side is normal with zero mean a
variancex2ξ2

a + (1− x)2ξ2
d − 2x(1− x)ρξaξd . It follows that the entrant will choose pu

strategy 1 with probability:

Pr[1 | x] = Φ

(
xa − (1− x)d

σ
√

x2ξ2
a + (1− x)2ξ2

d − 2x(1− x)ρξaξd

)
where Φ represents the cumulative distribution function of the standard norma
inspection, it is clear that an entrant is more likely to choose strategy 1 whenx (and hence
z) is sufficiently high. This fact is reflected in Definition 1, where the notation�u� indicates
the smallest integer aboveu, and�u� indicates the largest integer belowu.3

Definition 1. Thebasins of attraction for strategies 1 and 2 are:

Z1 = {⌈
(n − 1)x∗ + 1

⌉
, . . . , n

}
and Z2 = {

0, . . . ,
⌊
(n − 1)x∗⌋}

.

Thebasin depth faced by an entrant isκ(x)2 or equivalentlyκ2
i , where:

κ(x) = xa − (1− x)d√
x2ξ2

a + (1− x)2ξ2
d − 2x(1− x)ρξaξd

and κi = κ

(
i

n − 1

)
so that an entrant will choosepure strategy 1 with probabilityΦ(κ(x)/σ).

The “flow of play” is toward a strategy from states within its basin of attraction. Sta
from z ∈ Z1, an entrant will observe at leasti = z − 1 incumbents using strategy
Following Definition 1,i = z − 1� �(n− 1)x∗� > (n− 1)x∗,4 and hencex = i/(n− 1) >

x∗: The expected payoff from strategy 1 is higher than that from strategy 2. Equival
κ(x) = κi > 0 and hence Pr[1 | x] > 1/2. Similarly, from a statez ∈ Z2, any entrant is
more likely to choose strategy 2. Finally, statez = �(n − 1)x∗� belongs to neither basin o
attraction. The most likely entrant choicedepends upon the identity of the exiting playe

Whereas the basins of attraction reflect the flow of play, the basin depth index
difficulty of moving against that flow. Consider once again a statez ∈ Z1. An entrant is

3 More formally�u� = min{k ∈ Z: k � u} and�u� = max{k ∈ Z: k � u}; u /∈ Z ⇒ �u� > �u�.
4 By assumption(n − 1)x∗ does not take an integer value.
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most likely to play strategy 2 when a strategy 1 player exits. In this case, the probab
a contrary action is simply 1−Φ(κi/σ ) wherei = z − 1. For largeκ2

i , it is highly unlikely
the choice will be made against the flow of play.

The transition probabilities of adaptive play may now be calculated. Writepzz′ =
Pr[zt+1 = z′ | zt = z] for the probability of a transition from statez to statez′. A single
player is replaced each period, and hencepzz′ = 0 for |z − z′| > 1. For statesz < n, the
probability of a step up is

pz,z+1 = n − z

n
× Φ

(κz

σ

)
.

A step up requires the exit of strategy 2 incumbent, which occurs with proba
(n − z)/n. The entrant must choose strategy 1, which occurs with probabilityΦ(κz/σ).
Similar procedures lead to expressions for other transitions:

pz,z−1 = z

n
×

[
1− Φ

(κz−1

σ

)]
and

pz,z = n − z

n
×

[
1− Φ

(κz

σ

)]
+ z

n
Φ

(κz−1

σ

)
.

3. Long-run behaviour

Adaptive play exhibits path dependence in the short run. An entrant to statez = n, for
instance, is most likely to choose strategy 1, and hence the process remains in the
attractionZ1. In the long run, however, contrary actions against the flow of play allow
process to escape from a basin of attraction. Formally, the Markov chain isergodic, and
its long-run behaviour is independent of any initial conditions. To see this, first obser
that the process isirreducible: There is positive probability of moving between any tw
states in a finite number of steps, and hence permanent “lock in” to any state canno
Second, all states areaperiodic: There is positive probability of remaining in a state, a
this prevents the occurrence of established cycles. These two features are sufficient
ergodicity (Grimmett and Stirzaker, 2001).

By the Ergodic Theorem, any finite ergodic Markov chain has a unique statio
distribution. This is a probability vector[πz]z∈Z satisfying πz = limt→∞ Pr[zt = z],
independent of any initial conditions. No matter where the process starts, in the long r
the process will be in statez with probabilityπz. The stationary distribution is the uniqu
solution to the detailed balance equationsπz = ∑

z′∈Z πz′pz′z, ∀z ∈ Z. The one-step-a-tim
nature of adaptive play ensures that these equations take a particularly simple form

π0 = π0p00 + π1p10, πn = πnpnn + πn−1p(n−1)n and

πz = πzpzz + πz−1p(z−1)z + πz+1p(z+1)z.

Solving these equations yields the unique solution:

πz = qz∑
j∈Z qj

where qz =
∏

0�j<z

pj (j+1)

∏
z<j�n

pj (j−1)

⇒ πz = p(z+1)z
. (2)
πz+1 pz(z+1)
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This familiar form is common to birth-death processes. The final element of Eq. (2) h
easy interpretation: The long-run relative likelihood of neighbouring states is the re
probability of jumping backward and forward between them. Employing the exp
transition probabilities for the adaptive play dynamic yields the following.

Lemma 1. Adaptive play has a unique stationary (ergodic) distribution π satisfying:

πz = qz∑
j∈Z qj

where qz =
∏

0�j<z

n − j

n
Φ

(κj

σ

) ∏
z<j�n

j

n

(
1− Φ

(κj−1

σ

))
. (3)

Proof. Substitute the transition probabilities into Eq. (2).�
The distribution characterised by Lemma 1 is related to the Bayesian Nash equ

of the underlying stage game. Suppose that a fractionx < Φ(κ(x)/σ) of incumbent
players are using strategy 1. A strategy 1 player is less likely to exit (with probabilix)
than to enter (with approximate probabilityΦ(κ(x)/σ)). Similarly, a strategy 2 playe
is more likely to exit than to enter. In expectation, the number of strategy 1 pla
is growing. Identical logic suggests that the number of strategy 1 players is like
decrease whenx > Φ(κ(x)/σ). Intuitively, the process is moving toward stable fix
points ofΦ(κ(x)/σ). Such a fixed point̃x = Φ(κ(x̃)/σ ) is, of course, a Bayesian Nas
equilibrium of the stage game. Lemma 2 describes such equilibria. An equilibrium
hence fixed point)̃x will be denotedstable if it is a downcrossing. Formally, for smallε,
Φ(κ(x̃ − ε)/σ) > x̃ − ε andΦ(κ(x̃ + ε)/σ) < x̃ + ε. This means that a sequence of b
responses will lead from any point in a neighbourhood ofx̃ towardx̃. An equilibrium will
be denotedunstable if the opposite is true.

Lemma 2. For σ sufficiently small, there are three Bayesian Nash equilibria: x̃L <

x̃M < x̃H . The central BNE x̃M is unstable, the remaining equilibria are stable. Moreover,
x̃L → 0, x̃M → x∗ and x̃H → 1 as σ → 0. For σ sufficiently large, there is a unique and
stable BNE x̃. For a > d ⇔ x∗ < 1/2 this stable BNE satisfies x̃ > 1/2.

Proof. See Appendix A. �
The correspondence between stable Bayesian Nash equilibria and the long-ru

behaviour of the adaptive play dynamic is stated formally in Proposition 1, and illustra
graphically in Fig. 1. Notice that forσ large enough (σ = 2.25) there is a single
Bayesian Nash equilibrium above the halfway point (x̃ > 1/2), and the correspondin
ergodic distribution is unimodal. On the other hand, whenσ is sufficient small (for
instance,σ = 1.25), there are three Bayesian Nash equilibria. Two of these equilibri
stable (downcrossings), and are associated with the two maxima of the bimodal e
distribution.
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Fig. 1. Parameters area = 3, d = 2, ξa = ξd = 1, ρ = 0 andn = 30.

Proposition 1. The local maxima (modes) of the ergodic distribution coincide with stable
Bayesian Nash equilibria of the stage game. The local minima coincide with unstable
Bayesian Nash equilibria. Formally, for sufficiently large n:

x < Φ

(
κ(x)

σ

)
⇒ π�xn� < π�xn� and x > Φ

(
κ(x)

σ

)
⇒ π�xn� > π�xn�.

As n grows large all weight focuses on a single stable Bayesian Nash equilibrium x̃:

lim
n→∞

∑
�(x̃−ε)n��z��(x̃+ε)n�

πz = 1 for any ε > 0.

If a > d , ξa = ξd , and σ is sufficiently small for there to be three Bayesian Nash equilibria
x̃L < x̃M < x̃H (see Lemma 2), then all weight focuses on x̃H .

Proof. Take anyx such thatx < Φ(κ(x)/σ), so that 1− x > 1− Φ(κ(x)/σ). Then:

π�xn�
π�xn�

= p�xn��xn�
p�xn��xn�

= �xn�[1− Φ(κ�xn�/σ)]
(n − �xn�)Φ(κ�xn�/σ)

−→
n→∞

x[1− Φ(κ(x)/σ)]
(1− x)Φ(κ(x)/σ)

< 1.

Analysis of further limiting behaviour(n → ∞) is relegated to Appendix A. �
4. Equilibrium selection

KMR (1993) and Young (1993) allow the probability of an error (a mutation) to vanis
In the limit, the ergodic distribution places all weight on a single state, and “selects” a pu
strategy Nash equilibrium. The specification considered here involves no errors—p
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The analogue of a mutation is a contrary action taken against the flow of play. Suppo
a fractionx > x∗ of observed incumbents are using strategy 1, so thatκ(x) > 0. Without
payoff idiosyncrasy, an entrant would choose strategy 1. With payoff idiosyncrasy, a
entrant will choose the contrary strategy 2 with probability 1− Φ(κ(x)/σ). Following
a Harsanyi (1973) purification process (σ → 0) ensures that the probability of such
“mutation” vanishes to zero.5 The use of purification to select equilibria generates
following observations.

The probability of a contrary action differs across states: Forκ(y) > κ(x) > 0, such
probabilities satisfy 1− Φ(κ(y)/σ) < 1 − Φ(κ(x)/σ), and are in some sense sta
dependent. Bergin and Lipman(1996), however, employed a more stringent definition
state dependence. They demonstrated that the critical feature is the rate at which a mutatio
probability vanishes to zero in the selection process. Takingσ → 0:

1− Φ(κ(x)/σ)

1− Φ(κ(y)/σ)
= φ(κ(y)/σ)/(1− Φ(κ(y)/σ))

φ(κ(x)/σ)/(1− Φ(κ(x)/σ))
× φ(κ(x)/σ)

φ(κ(y)/σ)

→ κ(y)/σ

κ(x)/σ
exp

(
−κ(x)2 − κ(y)2

2σ 2

)
→ ∞.

The first equality follows from multiplying and dividing both numerator and denomin
by the normal densityφ. This yields a ratio of hazard rates as the first term, and a rat
densities as the second term. The second step follows from recognising that the haz
of the normal distribution is asymptotically linear: Formallyu − [φ(u)/(1 − Φ(u))] → 0
asu → ∞, yielding the ratio on the left.6 The exponential term on the right follows fro
the combination of the two normal densities. The third step follows from dominan
exponential terms in the limit, and thatκ(x)2 < κ(y)2 by assumption. Notice that the ra
at which the mutation probability dies away to zero is determined by the basin depthκ(x)2.
Hence the endogenously generated mutations meet the definition of state depende
proposed by Bergin and Lipman (1996).

A further observation is that the model fits into the framework described by B
(1999), where the probability of a mutation (the “noise” specification) depends upon th
expected payoff difference between the strategies. Facing a proportionx of strategy 1
opponents, this difference isax −d(1−x), which is a monotonic transformation ofx. The
adaptive play process described here is, therefore, a special case of Blume’s specificati
He obtained the following results: When the noise process is “skew symmetric,” me
that the mutation probability depends only on the absolute difference in payoffs
the risk-dominant equilibrium is selected in the limit. Here, the noise process is
symmetric wheneverξa = ξd . It remains to investigate selection whenξa �= ξd . A first

5 Of course, this is only one example of a purification process. There are other notions, for example tha
Aumann et al. (1983).

6 Apply l’Hôpital’s rule to obtain

lim
u→∞

{
φ(u)

1− Φ(u)
− u

}
= lim

u→∞
φ(u) − u(1− Φ(u))

1− Φ(u)
= lim

u→∞
Φ(u) − 1

−φ(u)
= 0.
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Lemma 3. Interior states carry no weight in the limit:

z /∈ {0, n} ⇒ lim
σ→0

πz = 0.

Proof. Consider a statez ∈ Z1 wherez < n. Note thatκz > 0. Allowing σ → ∞:

πz � πz

πz+1
= p(z+1)z

pz(z+1)

= z + 1

n
× n

n − z
× 1− Φ(κz/σ)

Φ(κz/σ)
−→ 0,

which follows sinceΦ(κz/σ) → 1 asσ → 0. �
It follows that limσ→0(π0 +πn) = 1. The relative likelihood of observing these extre

states is determined by the relative difficulty of moving between them. Two facto
influence this. The first is thebasin width. This is the number of steps (or mutation
required to escape from a basin of attraction. Sincex∗ < 1/2, the basinZ1 is wider than
Z2. In the models of KMR (1993) and Young (1993) each mutative step is taken with
probability. It follows that the strategy with the widest basin of attraction (in this c
the risk-dominant strategy 1) is selected. Here, however, thebasin depth is of importance.
Both width and depth together influence the selection process. An extension of Defin
reflects these ideas.

Definition 2. Basin volumes are defined asB1 = ∑
z∈Z1

κ2
z−1 andB2 = ∑

z∈Z2
κ2
z .

The basin depths and volumes are both illustrated in Fig. 2. The solid line illustrat
basins of attraction when the payoff trembles have equal variances. The basin of attract
for strategy 1 is both wider and deeper. In contrast, the broken line illustrates the
where the payoff trembles have unequal variances. Whereas the basinZ2 is narrower, it is
also far deeper. This is because the payoffã is more volatile, the probability of observin
a contrary action in this basin is much higher,and hence the basin volume is greater. T
effect of basin volume is demonstrated in the central selection result of the paper.

Fig. 2. Basin depths and volumes. Parameters area = 3 andd = 2.
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Proposition 2. The strategy with the largest basin volume is selected as σ → 0. Formally,
if B1 > B2 then limσ→0 πn = 1 and if B2 > B1 then limσ→0 π0 = 1.

Proof. Using Lemma 1 take the ratio ofπn andπ0 to obtain:

πn

π0
=

∏
z<n

n−z
n

Φ(κz/σ)∏
z>0

z
n
(1− Φ(κz−1/σ))

=
∏

z∈Z1
Φ(κz−1/σ)∏

z∈Z2
(1− Φ(κz/σ))

∏
z∈Z2

Φ(κz/σ)∏
z∈Z1

(1− Φ(κz−1/σ))
.

The above follows from the cancellation of terms such asz/n and (n − z)/n, and re-
indexing and separating the products as appropriate. The numerator and denomin
the first term on the right-hand side both tend to unity asσ → 0. For instance, whenz ∈ Z1,
reference to Definition 1 confirms thatκz−1 > 0. It follows strategy selection is determin
by the second term, where both numerator and denominator tend to zero. Write th
as ∏

z∈Z2
Φ(κz/σ)∏

z∈Z1
(1− Φ(κz−1/σ))

=
∏

z∈Z2
φ(κz/σ)∏

z∈Z1
φ(κz−1/σ)

×
∏

z∈Z1
φ(κz−1/σ)/(1− Φ(κz−1/σ))∏
z∈Z2

φ(κz/σ)/Φ(κz/σ)
.

The first term is explicitly:∏
z∈Z2

φ(κz/σ)∏
z∈Z1

φ(κz−1/σ)
= (2π)(n−2�(n−1)x∗�)/2 exp

(
−

∑
z∈Z2

κ2
z − ∑

z∈Z1
κ2
z−1

2σ 2

)
. (4)

Consider a typical element in the numerator of the second term. Sinceκz−1 > 0 for
z ∈ Z1, κz−1/σ → +∞ asσ → 0. Since the hazard rate of the normal is asymptotic
linear, it follows that limσ→0 φ(κz−1/σ)/(1 − Φ(κz−1/σ)) = limσ→0 κz−1/σ . A similar
argument holds for the denominator, whereκz < 0. Hence,∏

z∈Z1
φ(κz−1/σ)/(1− Φ(κz−1/σ))∏
z∈Z2

φ(κz/σ)/Φ(κz/σ)
→ σ �(n−1)x∗�

σn−�(n−1)x∗�

∏
z∈Z1

κz−1∏
z∈Z2

(−κz)

which is polynomial inσ . The first term, (4), is exponential inσ . The limit becomes

lim
σ→0

πn

π0
= lim

σ→0

(√
2π

σ

)n−2�(n−1)x∗�
exp

(
−

∑
z∈Z2

κ2
z − ∑

z∈Z1
κ2
z−1

2σ 2

)

×
∏

z∈Z1
κz−1∏

z∈Z2
(−κz)

.

The exponential term dominates asymptotically, and hence the limit diverges whene
numerator of the fractional term in the exponent is negative. In conclusion:
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∑
z∈Z1

κ2
z−1 >

∑
z∈Z2

κ2
z ⇒ lim

σ→0

πn

π0
= ∞ and

∑
z∈Z1

κ2
z−1 <

∑
z∈Z2

κ2
z ⇒ lim

σ→0

πn

π0
= 0,

which is precisely the desired result.�
Proposition 2 yields an immediate and simple corollary.

Corollary 1. For n = 2, strategy 1 is selected (limσ→0 πn = 1) whenever a/ξa > d/ξd .

Then = 2 case is of interest precisely becauseit corresponds to a situation where t
population size matches the number of players. In this case, the models of KMR (199
Young (1993) do not offer a selection result. Each basin of attraction has a single me
and hence escape from either requires exactlyone mutation. Here, however, a select
result is obtained. This is because the probability of a contrary action depends upon th
payoffs and tremble variances of the game. In then = 2 case, selection is driven entire
by basin depth and not by basin width. From Corollary 1 it is clear that strategy 1 is se
wheneverξa = ξd , since its risk dominance corresponds toa > d . This is also true for large
populations.

Corollary 2. Suppose that ξa = ξd . Strategy 1 is risk-dominant and hence selected.

Proof. See Appendix A. �
When payoffs are trembled in the same way, risk-dominant equilibria continue

selected, confirming the analysis of Blume (1999). When trembles are payoff sp
(equivalent to a skew asymmetric noise specification), then either equilibrium m
selected. The basin volume of Definition 2 captures the relative influence of these f
The degree to which asymmetry in tremble variances can overcome the effect of r
payoff size is illustrated in Fig. 3. To the right of the vertical dotted line, strateg
is risk-dominant. When payoff variances are equal (ξ2

a /(ξ2
a − ξ2

d ) = 1/2) the selection
criterion coincides with risk dominance. As the trembles become more skew asym
(for instance, for relatively largeξ2

a ) the criterion diverges. The dashed line, for instan
shows the equilibrium selected forn = 5.
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Fig. 3. Strategy selection regions (ρ = 0).

Appendix A. Omitted results

Proof of Lemma 2. Fixed points ofΦ(κ(x)/σ) are roots off (x) = Φ(κ(x)/σ) − x.
Notice thatf ′(x) = φ(κ(x)/σ)κ ′(x)/σ − 1. As σ → ∞, f ′(x) → −1 uniformly for
x ∈ [0,1]. Thus, for sufficiently largeσ , f (x) is decreasing everywhere. Hencef (x) only
has one root in the neighbourhood ofx = 1

2. Whenσ → 0, f (x) → 1 − x if x > x∗ and
f (x) → −x if x < x∗, so there cannot be a fixed point unless it is local to{0, x∗,1}.
Consider the interval[0, ε]. For sufficiently smallσ , f (x) is decreasing in this interva
Moreover,f (0) > 0 andf (ε) < 0. Therefore there is exactly one root in this interv
A similar argument applies to[1−ε,1]. Now consider[x∗−ε, x∗+ε]. Thenf (x∗−ε) < 0
andf (x∗ + ε) > 0. Again there is at least one root in the interval.Φ(κ(x)/σ) is strictly
increasing. A fixed point ofΦ(κ(x)/σ) corresponds to a fixed point of its inverse. Lo
to x∗ the derivative of the inverse is less than one. This locality expands asσ gets small.
Within this region there can be only one fixed point of the inverse and hence in this in
the root off (x) is unique. �
Proof of Proposition 1. Take a proportionx of strategy 1 players and a correspond
statez = �nx� or z = �nx�. Take logs of Eq. (3) and divide byn:

logqz

n
= 1

n

{∑
j<z

log

[
n − j

n
Φ

(κj

σ

)]
+

∑
j>z

log

[
j

n

(
1− Φ

(κj−1

σ

))]}

→ Q(x) ≡
x∫

0

log(1− y)Φ

(
κ(y)

σ

)
dy +

1∫
x

logy

(
1− Φ

(
κ(y)

σ

))
dy

which is an integral approximation similar in spirit to that employed by Young (19
Differentiation reveals thatQ′(x) = 0 ⇔ x = Φ(κ(x)/σ). In other words, maxima an



136 D.P. Myatt, C.C. Wallace / Games and Economic Behavior 48 (2004) 124–138

f
r

.

of
e
,
r
o

minima x̃ of Q(x) correspond to Bayesian Nash equilibria. This reaffirms the first part o
the proposition. For almost all payoff specifications,Q(x) has a unique global maximise
x̂. For arbitrarily smallε, define

∆ε = {
x ∈ [0,1]: Q(x) � Q(x̂) − ε

}
.

For sufficiently smallε, this is a convex neighbourhood ofx̂. ∆2ε may be defined similarly
Now consider the following:∑

z: z
n ∈∆ε

πz∑
z: z

n /∈∆2ε
πz

=
∑

z: z
n ∈∆ε

qz∑
z: z

n /∈∆2ε
qz

�
minz: z

n ∈∆ε
qz

maxz: z
n

/∈∆2ε
qz

× #{z : z
n

∈ ∆ε}
#{z : z

n
/∈ ∆2ε} .

The right-hand term converges to a non-zero number. Taking the left hand term:

log

[ minz: z
n
∈∆ε

qz

maxz: z
n /∈∆2ε

qz

]
= n

[
min

z: z
n
∈∆ε

logqz

n
− max

z: z
n /∈∆2ε

logqz

n

]
−→
n→∞n

[(
Q(x̂) − ε

) − (
Q(x̂) − 2ε

)] = nε

−→
n→∞∞.

It follows that all weight in the ergodic distribution must accrue in a neighbourhoodx̂.
It remains to show that̂x = x̃H whenξa = ξd . For sufficiently smallσ there are two stabl
Bayesian Nash equilibria satisfying̃xL < 1/2 < x̃H (Lemma 2). It is sufficient, therefore
to show that̂x > 1/2. Suppose not, so thatx̂ < 1/2. Sincex̂ is the unique global maximise
of Q(x) it must be the case thatQ(x̂) > Q(1− x̂). Computing the difference of these tw
terms:

Q(x̂) − Q(1− x̂) =
1−x̂∫
x̂

logy

(
1− Φ

(
κ(y)

σ

))
dy −

1−x̂∫
x̂

log(1− y)Φ

(
κ(y)

σ

)
dy

=
1−x̂∫
x̂

logy

(
1− Φ

(
κ(y)

σ

))
dy −

1−x̂∫
x̂

logyΦ

(
κ(1− y)

σ

)
dy

=
1−x̂∫
x̂

log

[
1− Φ(κ(y)/σ)

Φ(κ(1− y)/σ)

]
dy

=
1/2∫
x̂

log

[
1− Φ(κ(y)/σ)

Φ(κ(1− y)/σ)

]
dy +

1−x̂∫
1/2

log

[
1− Φ(κ(y)/σ)

Φ(κ(1− y)/σ)

]
dy

=
1/2∫
x̂

log

[
1− Φ(κ(y)/σ)

Φ(κ(1− y)/σ)

]
dy +

1/2∫
x̂

log

[
1− Φ(κ(1− y)/σ)

Φ(κ(y)/σ)

]
dy

=
1/2∫

log

[
1− Φ(κ(y)/σ)

Φ(κ(1− y)/σ)

][
1− Φ(κ(1− y)/σ)

Φ(κ(y)/σ)

]
dy.
x̂
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For this to be positive, it must be true that for somey < 1/2 the integrand is positive. Th
reduces to:

1− Φ
(
κ(y)/σ

)
> Φ

(
κ(1− y)/σ

) ⇔ −κ(y) > κ(1− y)

⇔ −ya + (1− y)d > (1− y)a − yd

⇔ d > a.

But this is a contradiction, since by assumptiona > d . �
Proof of Corollary 2. The basin volume condition is

�x∗(n−1)�∑
j=0

(ja − (n − j − 1)d)2

j2 + (n − j − 1)2
<

n−1∑
j=�x∗(n−1)�

(ja − (n − j − 1)d)2

j2 + (n − j − 1)2
.

Consider the right hand term. Make a change of variablek = n − j − 1 to yield

�x∗(n−1)�∑
j=0

(ja − (n − j − 1)d)2

j2 + (n − j − 1)2 <

n−1−�x∗(n−1)�∑
k=0

((n − k − 1)a − kd)2

k2 + (n − k − 1)2 .

If strategy 1 is risk-dominant, thena > d and�x∗(n − 1)� < n − 1 − �x∗(n − 1)�. The
condition becomes

�x∗(n−1)�∑
j=0

(ja − (n − j − 1)d)2 − ((n − j − 1)a − jd)2

j2 + (n − j − 1)2

<

n−1−�x∗(n−1)�∑
k=�x∗(n−1)�

((n − k − 1)a − kd)2

k2 + (n − k − 1)2 .

The right-hand side of this expression is positive. Multiply out the numerator in each
left-hand terms:(

ja − (n − j − 1)d
)2 − (

(n − j − 1)a − jd
)2 = (

j2 − (n − j − 1)2)(a2 − d2).
This is negative sincea2 > d2 andj2 < (n − j − 1)2 for j � �x∗(n − 1)�. The inequality
holds, yielding sufficiency. Necessity follows since ifa < d the same procedure establish
the dominance of strategy 2.�
Calculation of basin volume for large n. Figure 3 displays the basin volume select
criterion for largen. Usingλ = a/(a + d), ψ = ξ2

a /(ξ2
a + ξ2

d ) and settingρ = 0, the basin
depth is proportional to:

κ̃(x)2 = (λx − (1− λ)(1− x))2

ψx2 + (1− ψ)(1− x)2 . (A.1)

Dividing the basin volume byn, obtain

B1

n
= 1

n

∑
z∈Z

κ2
z−1 −→

n→∞

1∫
∗

κ(x)2 dx ∝
1∫

∗
κ̃(x)2 dx
1 x x
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and similarly forB2. An explicit form for the last integral is available:∫
κ̃(x)2 dx = x + λ2 − ψ − 2λψ + 2ψ2

√
ψ(1− ψ)

arctan

{
x − (1− ψ)√

ψ(1 − ψ)

}
+ (λ − ψ) log

(
ψx2 + (1− ψ)(1 − x)2) + const.

Differentiation of the above yields the expression from Eq. (A.1). This enables
calculation of the line forn → ∞ in Fig. 3. �
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