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This paper studies collective-action games in which the production of a public good requires team-
work. A leading example is a threshold game in which provision requires the voluntary participation of
m out of n players. Quantal-response strategy revisions allow play to move between equilibria in which a
team successfully provides, and an equilibrium in which the collective action fails. A full characterization
of long-run play reveals the determinants of success; these include the correlation between players’ costs
of provision and their valuations for the good. The addition of an extra “bad apple” player can “spoil
the barrel” by destabilizing successful teams and so offers a rationale for limiting the pool of possible
contributors.

1. COLLECTIVE ACTION

The problems of collective action have long concerned social scientists. To economists, the
Olson (1968) view is that a collective action involves the private production of a public good
or the private exploitation of a common-pool resource; the associated externalities lead to
socially suboptimal public-good provision or a tragedy of the commons. Political scientists and
sociologists have also found many instances of these problems. These include voter participation
(Palfrey and Rosenthal, 1985; Bendor, Diermeier and Ting, 2003; Diermeier and Van Mieghem,
2005a), interest groups (Oliver, Marwell and Teixeira, 1985; Marwell, Oliver and Prahl, 1988;
Oliver and Marwell, 1988), industry lobbies (Hansen, 1985), consumer boycotts (Diermeier and
Van Mieghem, 2005b; Innes, 2006), and many others.

In the context of privately provided public goods, Olson’s (1968) strong free-rider hypoth-
esis is that contributions fall with the size of the group involved. This requires the public good
to be at least partially rival, so that increased consumption raises the cost of provision. This
jointness of consumption relates provision incentives to the size of the consuming group. How-
ever, this view does not reveal the relationship between such incentives and the number of other
contributors. This latter relationship may stem from the jointness of supply, which applies when
the optimal provision decision of an individual depends upon the contributions of others. For
example, if public-good production were a concave function of aggregate private contributions
then a standard Cournot-contributions game would arise (Shibata, 1971; Warr, 1983; Cornes and
Sandler, 1984; Bergstrom, Blume and Varian, 1986). In such a game an individual’s incentive to
provide falls with the contributions of others.
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However, in other circumstances there is an incentive to provide only if others do so. The
teamwork dilemmas that arise in such situations are precisely the focus of this paper. These
dilemmas are most simply captured by an n-player “threshold” binary-action game in which m
or more voluntary contributions are required for the production of a public good (Palfrey and
Rosenthal, 1984). Such a game reflects the collective nature of collective action. The jointness
of supply offers a possible resolution to the underprovision problem: when an entire project
depends in a pivotal way on the contributions of each individual, incentives are dramatically en-
hanced, so long as others play their part. On the other hand, when m > 1 there is an equilibrium
in which the team (and with it the collective project) fails. Beyond economics, threshold games
of this form are also central to a large and important sociological literature. The need for a critical
level of participation corresponds to the “minimal contributing set” of van de Kragt, Orbell and
Dawes (1983) and Rapoport (1985).1 The equilibrium-selection problem was (implicitly) recog-
nized in sociological theories of “critical mass” (Oliver and Marwell, 2001) and models of crowd
behaviour (Berk, 1974).

The critical feature of a threshold game is that a convexity in the public-good production
function generates a coordination problem; the “n choose m” specification is the simplest way to
capture this feature. The insights are substantially unchanged when attention moves to a richer
class of public-good provision games. Threshold games are amenable to detailed analysis with
fully asymmetric players. However, later in the paper the focus broadens out to a completely gen-
eral class of public-good production functions: players continue to differ whilst their valuation
of the public good is common.

The coordination problem that arises in a teamwork dilemma leads to three central questions.
When will the collective action succeed? If it succeeds, who are the members of the providing
team? What role does the size and composition of the contributor pool play? Variants of these
questions also arise in the context of more general public-good provision games. Focusing on the
role of the contributor pool, this paper offers answers to these questions.

The identification of Nash equilibria of collective-action games cannot provide general an-
swers; neither does the characterization of the Bayesian Nash equilibria of related incomplete-
information games. The difficulty faced by static solution concepts is that an equilibrium-selection
problem arises whenever the success of a collective action requires teamwork.2

Instead, this paper studies a model in which play evolves: a strategy-revision process is
considered in which each player periodically chooses a myopic quantal response to the current
state of play.3 The associated long-run distribution over strategy profiles is characterized. When
quantal responses approximate myopic best replies the process spends almost all time local to
a selected equilibrium of the corresponding complete-information game. While sharp results
(Sections 4–5) are available for this case, the analysis may also be applied away from the limit.
Using a logit specification applied to a general class of symmetric-valuation games, a complete
characterization of long-run behaviour is provided (Section 6).

1. van de Kragt, Orbell and Dawes (1983, p. 113, original emphasis) explained: “Its essentials are very simple:
when the cost of the group’s public good is assigned to a subset of members each of whose contribution is necessary to
the production of the good, it is reasonable for each to contribute . . . [this logic] does not appear to have been specified in
the literature on public-good provision.” It may be optimal to rest the fate of a team upon the shoulders of each member;
however, this works only if others participate as expected.

2. Palfrey and Rosenthal (1984) characterized mixed-strategy Nash equilibria of a teamwork dilemma in which a
subset of the players randomize. Even when pay-offs are symmetric, there are values of m and n for which there is no
symmetric mixed-strategy equilibrium; a simple “appeal to symmetry” cannot address the equilibrium-selection problem,
unless that appeal is content that no player will ever contribute.

3. This modelling strategy has been exploited in a series of papers by Blume (1995, 1997, 2003) and Blume and
Durlauf (2001), who studied logit-driven quantal responses. Diermeier and Van Mieghem (2005b) presented a model of
consumer boycotts using an approach related to the one taken here.
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So why examine a strategy-revision process? One justification is pragmatic: standard solu-
tion concepts face an equilibrium-selection problem. One resolution is to investigate the relative
robustness of equilibria. Specifying quantal responses is one step towards doing this: noise allows
play to move away from Nash equilibria. For instance, in the threshold game there is an equi-
librium in which no player contributes; the corresponding quantal-response equilibrium allows
for occasional participation against the flow of play. The likelihood of such events can measure
the robustness of this, and other, equilibria. Such an approach entails an implicit dynamic story:
Section 3 examines this argument in detail. The long-run distribution of play precisely captures
the relative robustness of the various states of play.

An empirical justification is that collective-action participation does in fact vary over time.
The open-source software movement exemplifies.4 Recent papers have used data from the Source-
Forge (sourceforge.net) collaborative development environment to assess the dynamics of volun-
tary involvement in open-source projects. In one such study, David and Rullani (2006) calculated
transition probabilities between different states of participation. Their evidence shows that pro-
grammers enter and exit projects regularly. Furthermore, other studies based on SourceForge
(Giuri, Ploner, Rullani and Torrisi, 2006, for example) have observed that teamwork is a funda-
mental organizational feature of the open-source development model.

The dynamics of contribution decisions and the need for teamwork are also present in po-
litical settings. For instance, Bulow and Klemperer (1999) documented the passing of President
Clinton’s U.S. budget in August 1993. The budget required a critical number of supporters in
order to pass and hence generate a collective benefit (support for the new Democratic president’s
first budget). However, the act of support (a participation decision) was privately costly for the
legislators owing to the bill’s wider unpopularity. Support was in fact built over time as legislators
steadily fell into line. The important features highlighted here are the need for teamwork and the
dynamic way in which support was built.5

The evolution of collective action when success depends upon a critical mass of participa-
tion is an important component of sociological phenomena: these features are central to crowd
behaviour, the onset of riots and strikes, and other social movements. Granovetter (1978), Oliver
and Marwell (1988), Oliver et al. (1985), and others, used numerical simulations, experiments,
and informal theory to investigate the dynamics of groups involved in collective actions. Such
authors have noted that a small number of initial contributions may raise the effectiveness of fur-
ther contributions and induce mass participation. Heckathorn (1993, 1996), Macy (1990, 1991a),
and others developed these ideas.

An important determinant of the success of a team-based collective action is the ease with
which teams build. However, the relative robustness of established teams is also important. When
success of a team depends pivotally on the participation of its members, a collapse can occur
when a “bad apple” chooses to depart. Sociologists (Macy, 1991b) and psychologists (Colman,
1982, 1995) have noted the importance of bad apples in social dilemmas. Empirical (Barrick,
Stewart, Neubert and Mount, 1998; Dunlop and Lee, 2004) and experimental (Haythorn, 1953;
Camacho and Paulus, 1995) studies of organizations and teams have found that the presence of
bad apples is a strong indicator of poor performance.6

The bad-apple phenomenon leads to a further justification for the study of a strategy-revision
process. A central message emerging from the formal results presented in this paper is that the

4. Programmers make voluntary contributions to software projects. The “copyleft” licensing regime (Raymond,
1998) ensures that these can then be used freely by all members of the user and programmer community.

5. Bulow and Klemperer (1999) modelled this event as a multi-player war of attrition. In such a game participants
(that is, those who concede early on rather than holding out to free ride) anticipate the future behaviour of others. Hence
players are more patient than the myopic agents that are the focus of this paper.

6. For an extensive discussion and documentation of such bad-apple effects in the psychology and organizational
behaviour literatures, see Felps, Mitchell and Byington (2006).
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characteristics of potential contributors can matter even if they do not usually participate in the
provision of the public good. Indeed, some of these contributors are bad apples in that their
presence can sometimes destablize an otherwise-successful collective action. Such bad apples
can enter a successfully operating team, supplant an existing member, and then subsequently
leave. This phenomenon relies critically on a dynamic model; an examination of the equilibria of
a static game necessarily misses this important feature.

The insights that emerge from the study of such strategy-revision processes are most easily
seen in the context of threshold games: a myopic best reply is for a player to contribute if and
only if pivotal. When a revising player joins a collective action even when not pivotal the process
experiences a low probability “birth”. Similarly, when a revising player leaves a successful team
then the process experiences a “death”. Quantal responses allow the probabilities of births and
deaths to respond to pay-offs: a birth is less likely when the cost of participation is high, and
a death is less likely when the public good is highly prized. The “noise” in a player’s quantal
response also matters: under a random-utility interpretation, the birth and death probabilities are
higher for more variable pay-offs.

When will a collective action succeed? This depends upon the ease with which teams form
and disband. To build a team from scratch, m−1 players must take a costly action, which yields
no immediate benefit; the m-th team member is pivotal and so finds it myopically optimal to
participate. Team disruption, on the other hand, takes but one death: a single participant must
choose (against the flow of play) to leave a successfully operating team, hence prompting its
collapse. With symmetric players, a comparison of these elements reveals that a collective action
will succeed when m−1 births are more likely than a single death.

Who are the members of a successful team? They are (usually) the “most enthusiastic” play-
ers who experience the highest birth probabilities. Enthusiasm might stem from low contribution
costs, and hence enthusiastic players will be least likely to leave a successful team. Alternatively,
enthusiasm may stem from pay-off variability. A player with relatively noisy pay-offs is more
likely to join and also more likely to drop out. Such a team member can be a bad apple within
the team and cause the collective action to fail. A bad apple within the team can also appear
when the players with low contribution costs place little value on the public good. This bad-apple
effect sheds light on the role played by the composition of the contributor pool: the success of a
collective action is favoured when low contribution costs (high birth probabilities) are associated
with high public-good valuations (low death probabilities) so that enthusiasts are hard to kill.

This is not the only instance of the bad-apple effect. A player outside a successfully oper-
ating team might destabilize a successful collective action from without: the player voluntarily
joins the team as the (m +1)-th contributor; an incumbent team member finds it myopically opti-
mal to leave; the bad apple subsequently drops out with high probability; and the team collapses.
This story illustrates how the wider pool of potential contributors matters. Such players, whilst
not playing a major role in long-run provision, nevertheless may supplant more reliable team
members, disrupting the team along the way.

Moving beyond simple threshold games bad-apple effects remain when a general class of
public-good production functions is considered. In this general setting, and even when quantal
responses do not approximate best replies, sharp results obtain. When differences in players arise
from differences in their costs of participation, the worst kind of bad apple is a player with an
intermediate cost. This “rotten apple” joins in now and again, but tends not to stick around for
the long haul. Welfare increases when such rotten apples are excluded from the pool of potential
contributors, and is optimized when the contributor pool is restricted to a subset of players with
sufficiently low contribution costs.

Sections 2 and 3 describe and discuss, respectively, the evolution of collective action, with a
particular focus on threshold games. Section 4 presents results for vanishing noise, which are then
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applied to cases of interest in Section 5. Section 6 expands the scope of the paper by allowing
for a completely general class of public-good production technologies, whilst also allowing for
non-vanishing noise. The proofs of the propositions in the main text are relegated to Appendix C.
These build upon two central theorems: Theorem A1 (Appendix A) completely characterizes the
ergodic distribution for vanishing noise; Theorem B1 (Appendix B) relates team success to the
association between birth and death probabilities.

2. THE EVOLUTION OF COLLECTIVE ACTION

In this section a collective-action game of interest is described and the mechanism by which
play evolves is introduced. A critical discussion of the modelling strategy, an evaluation of other
approaches, and an interpretation of the model’s components are contained in Section 3.

In a simultaneous-move n-player game, player i selects zi ∈ {0,1}, where zi = 1 represents
participation in a collective action. A pure-strategy profile z ∈ Z ≡ {0,1}n generates a pay-off
ui (z) for player i . In the context of the process described below, z is a “state of play” from the
state space Z . It proves useful to write |z| ≡ ∑

i zi for the number of contributors, and Zk ≡ {z :
|z| = k} for the k-th “layer” of the state space.

Further notation proves helpful. Of interest will be the comparison of states that differ by the
action of player i . Starting from z, write zi+ for the state obtained by setting zi = 1 and zi− for
the state obtained by setting zi = 0; hence z ∈ {zi−, zi+}. The “contribution incentive” for player i
is �ui (z) ≡ ui (zi+)−ui (zi−). With very little loss of generality, and to simplify the exposition,
the contribution incentive is assumed to be non-zero for any z. The set of pure-strategy Nash
equilibria is simply Z∗ = {z : zi = 1 ⇔ �ui (z) > 0}.

A collective-action game of particular interest is an “n choose m” game for some m > 1:
a player has an incentive to contribute if and only if that player’s participation is pivotal to the
formation of a “team” of m players. Using the contribution-incentive terminology,

�ui (z) > 0 ⇔ |zi+| = m.

For such games, there are
(n
m

)+1 pure-strategy Nash equilibria: the
(n
m

)
states of play in the

m-th layer Zm , plus the single state in Z0. The equilibria in Zm involve team success: each team
member (a player satisfying zi = 1) is pivotal. In contrast, failure involves zi = 0 for all i : when
m > 1 no individual is able to provide unilaterally. Here “team success” corresponds to the joint
provision of a public good. Setting vi > ci > 0, a pay-off specification might be

ui (z) = vi ×I[|z| ≥ m]− zi ci ,

where I[·] is the indicator function. Thus player i’s private valuation for the public good is vi ,
and the private contribution cost is ci . This is the threshold public-good provision game studied
by Palfrey and Rosenthal (1984). However, many other collective-action games yield the same
best-response structure and the same set of pure-strategy Nash equilibria. Since m > 1, the im-
portant feature is that players face a “teamwork dilemma”.7 The remainder of this section and
Sections 4–5 focus exclusively on such dilemmas. However, the insights carry over readily to a
fully general class of public-good production functions (Section 6).

Rather than study Nash equilibria, attention turns to evolving play. At each time t the
state of play zt ∈ Z is updated via a one-step-at-a-time strategy-revision process: a player i

7. In contrast, m = 1 yields a “volunteer’s dilemma” in which there are n “individual success” equilibria; the
issue is no longer whether the collective action will succeed, but rather the identity of the public-good provider. A
complementary analysis of this “n choose 1” case is available (Myatt and Wallace, 2008).
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is randomly selected and chooses an action based solely on the current state, which is then up-
dated to zt+1 ∈ {zi−

t , zi+
t }. This generates a Markov chain on Z , with transition probabilities

Pr[z → z′] ≡ Pr[zt+1 = z′ | zt = z]. The transitions involve steps up and down between the layers
of the state space. A step up is the “birth” of a new contributor, and involves a (myopic) best reply
by the revising player if and only if zt+1 ∈ Zm ; that is, if and only if the new contributor is the
pivotal m-th member of a successful team. Otherwise, a birth follows a revision that is against
the flow of play. Similarly, a step down is the “death” of an existing contributor. This is against
the flow of play if and only if zt ∈ Zm .

Allowing a revising player to choose the strict best reply to the current state yields path-
dependence; the process will lock in to any pure-strategy Nash equilibrium. Here, players are
assumed to choose against the flow of play with some probability. Formally,

Pr[zi− → zi+] = 1

n
×

{
1−di zi+ ∈ Zm,

bi otherwise,

and Pr[zi+ → zi−] = 1

n
×

{
di zi+ ∈ Zm,

1−bi otherwise.

Player i will normally participate if and only if a contribution is pivotal. When not, player
i contributes only with some (perhaps small) birth probability bi > 0. Similarly, player i exits a
successful team (or equivalently fails to join in when m −1 others contribute) with some (again,
perhaps small) death probability di > 0. These “mutations” allow the strategy-revision process
to escape from pure-strategy equilibria and move around the state space. If bi > 0 and di > 0 for
each i , the strategy-revision process is an ergodic Markov chain on Z , and there exists a unique
ergodic distribution over Z satisfying, for any initial conditions,

pz = lim
t→∞Pr[zt = z],

so that pz reveals how often z is played in the long run. If play spends most of the time in Zm ,
then the collective action succeeds; if play languishes in Z0, then the action fails.

Birth and death probabilities differ from each other and across players. As “noise vanishes”
(that is, as ε → 0) these probabilities decline at different rates. Formally,

ε × log

[
1−bi

bi

]
= βi and ε × log

[
1−di

di

]
= δi . (1)

An inspection of (1) reveals that βi is the (exponential) rate at which bi vanishes as ε → 0;
it is the “birth cost” of a transition made against the flow of play by a new contributor. Similarly,
δi is the “death cost” of a step down from Zm . If birth and death costs differ, then birth and death
probabilities vanish at different rates as ε → 0. This generates state-dependent mutations (Bergin
and Lipman, 1996). Sections 4 and 5 require only that (1) holds in the limit as ε → 0. For the
threshold game, Section 6 assumes that (1) holds for all ε > 0. However, Section 6 also considers
a wider class of public-good provision games.

3. MODELLING STRATEGY AND OTHER APPROACHES

Firstly, consider the birth and death probabilities introduced in Section 2. One possibility is to
set bi = di = ε for an “error” probability ε > 0. Such a model of mistakes is encompassed by
the more general specification employed here. Moreover, state-dependent birth and death prob-
abilities arise naturally from quantal-response strategy revisions (McKelvey and Palfrey, 1995).
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If player i is called upon to revise, then a logistic quantal response entails

Pr[zi,t+1 = 1]

Pr[zi,t+1 = 0]
= exp

(
�ui (zt )

ε

)
. (2)

This carries the usual random-utility interpretation, so that birth and death probabilities
respond to pay-offs. For instance, if player i’s cost of participation is small, then the birth cost
βi is small. To see the logit quantal-response in action, take the Palfrey and Rosenthal (1984)
threshold public-good provision game, for which ui (z) = viI[|z| ≥ m]− zi ci . Then

�ui (z) =
{

vi − ci |zi+| = m,

−ci otherwise.
(3)

This specification yields βi = ci and δi = vi − ci , which satisfy (1).
A wider class of quantal-response specifications satisfies (1) in the limit as ε → 0; this is all

that is needed for the characterization of long-run play as ε → 0 (Sections 4 and 5). Revisions
are made by probit quantal-response when player i contributes if and only if �ũi (z) > 0 where
�ũi (z) ∼ N (�ui (z),ε ×σ 2

i (z)). For the threshold game, set �ui (z) as above and

σ 2
i (z) =

{
γ 2

i |zi+| = m,

ξ2
i otherwise.

(4)

The probability that player i chooses to contribute against the flow of play is now given by
bi = 1−�[ci/(ξi ×√

ε)], where �(·) is the cumulative distribution of the standard normal. This
birth probability vanishes as the variance in the probit specification, indexed by ε, falls to zero.
For small ε, the birth probability can be approximated by a density. Going into the tails, the log
of the density of the normal falls with the square of its argument. So, as ε → 0,

ε log

[
1−bi

bi

]
→ βi and ε log

[
1−di

di

]
→ δi where βi = c2

i

2ξ2
i

and δi = (vi − ci )
2

2γ 2
i

. (5)

Other quantal-response specifications (see Appendix A) satisfy (5) and so also generate
models within the “birth and death cost” framework.8

The random-utility interpretation suggests a game of incomplete information and consid-
eration of Bayesian Nash equilibria. Such equilibria do not solve the multiplicity problem: for
every Nash equilibrium there is a Bayesian Nash equilibrium of the quantal-response game which
purifies the Nash equilibrium. Nevertheless, noisy pay-off realizations ensure that non-Nash pro-
files are played with non-zero (albeit small) probability. An investigation of these probabilities
might yield insight into the relative robustness of the equilibria. However, such an investigation
inexorably leads to a dynamic story and hence a strategy-revision process.

To pursue this investigation informally, consider the “team failure” Bayesian Nash equilib-
rium in which, with high probability, no player contributes.9 The collective action usually fails;
nevertheless, for ε > 0 there is a small chance that it succeeds. In fact, for small ε the probability
that player i contributes satisfies logPr[zi = 1] ≈ −βi/ε. Now, suppose that birth costs differ

8. For instance, when �ũi (z) follows a generalized error distribution (Harvey, 1981) then the associated birth and
death costs satisfy βi ∝ cν

i and δi ∝ (vi − ci )
ν , where ν ≥ 1 is a tail-thickness parameter.

9. A formal investigation is contained in a not-for-publication appendix (www.restud.com).
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and label players so that β1 < β2 < · · · < βn . The probability that the first m players contribute
is approximately b1 × b2 × ·· ·× bm . Since this m-strong subset of players is far more likely to
contribute simultaneously than any other subset, for small ε,

logPr[|z| ≥ m] ≈ −
∑m

i=1 βi

ε
.

Heuristically,
∑m

i=1 βi indexes the robustness of the team-failure equilibrium: it measures
the probability that the collective action succeeds despite the fact that it usually fails. Similarly,
consider the “team success” Bayesian Nash equilibrium in which, with high probability, the first
m players contribute: similar logic reveals that mini≤m[δi ], which is the death cost of the player
most likely to quit, indexes the equilibrium’s robustness. If mini≤m[δi ] >

∑m
i=1 βi , then the team

containing the first m players is relatively robust. On the other hand, it is relatively fragile when
a “bad apple” team member has a particularly low death cost.

But what of other teams? The bad apple might be replaced with another higher-death-cost
player. Consider the m players with the highest death costs. This team of “reliable” players is
obtained by excluding bad apples. But would this team ever form? If it consists of those with
relatively high birth costs (those reluctant to volunteer), then this seems unlikely.

This informal reasoning suggests a dynamic story. In order to assess the relative robustness
of a team it is necessary to think about which team is likely to arise in the first place. A natural
candidate is the team containing the first m players, simply because they have the lowest birth
costs: this suggests the comparison of mini≤m[δi ] and

∑m
i=1 βi made previously. Alas, this com-

parison neglects the possible role of other feasible teams. This is important because, within a
dynamic story, teams can form and collapse via indirect routes.

To see this, begin with a successful team containing the first m players. With some probabil-
ity (approximately b j ) player j > m volunteers. This does not cause the failure of the collective
action; however, it may alter the membership of the team. Once j participates an original team
member can drop out. Thus, thinking about how teams form and collapse leads to the study of
how the composition of teams may change over time. Now, if player j has a particularly low
death cost then the change in membership has reduced the robustness of the team. Player j is a
bad apple arising from outside the original team who supplants an existing team member, has-
tening the subsequent collapse of the collective action.

This informal investigation of the robustness of Bayesian Nash equilibria has led, somewhat
inevitably, to a dynamic story. This paper tells the story formally: only in this context can the ro-
bustness of the many different equilibria be assessed simultaneously. Furthermore, and crucially,
in a dynamic world the bad apples emerging from outside a team are brought to light; they remain
hidden when attention is restricted to static Bayesian Nash equilibria.

Returning to the dynamic story considered in this paper, the one-step-at-a-time specifica-
tion is shorthand for a process in which strategy-revision events arise stochastically. If players
are equipped with Poisson alarm clocks, so that individual revision opportunities arrive with a
constant hazard rate, then strategy revisions coincide with probability zero. Revising players best
reply to the current strategy profile.

This procedure does not necessarily require a great deal of information: revising players
need know only whether or not they are pivotal to the collective action. This information is easy
to obtain via experimentation: when encountering a revision opportunity a player might test the
alternative and switch action only when it generates a higher pay-off.

A second issue that arises is the rationality of the players. A sophisticated decision-maker
might anticipate future changes in play by others. This will matter only if the player is sufficiently
patient. If players are impatient or if revision opportunities are infrequent, then a fully rational
decision-maker is indistinguishable from a myopic one.
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A different modelling strategy might allow simultaneous revisions. The (implicit) infor-
mation requirements are higher: experimentation is more difficult, since (presumably) players
would be experimenting simultaneously. More worryingly, a fully rational interpretation is prob-
lematic since revising players implicitly assume that others will not change their behaviour and
so bounded rationality is essential: allowing revising players to anticipate simultaneous revisions
by others would, unfortunately, reintroduce the equilibrium-selection problem.10

4. COLLECTIVE ACTION IN THE LONG RUN: TEAM SUCCESS AND FAILURE

Attention now returns to the one-step-at-a-time strategy-revision process (Section 2). Long-run
behaviour is characterized by the ergodic distribution pz ≡ limt→∞ Pr[zt = z]. A standard ap-
proach (Foster and Young, 1990; Kandori, Mailath and Rob, 1993; Young, 1993) is to examine
the properties of this ergodic distribution as ε ↓ 0; the case of “vanishing noise”. When ε is small,
the flow of play almost always follows the direction of best reply and hence play tends to “lock
in” to the pure-strategy Nash equilibrium states contained in Z0 (when the collective action fails)
or states in Zm (when the collective action succeeds).

Definition 1. Allowing noise to vanish (ε ↓ 0) teamwork succeeds if and only if∑
z∈Zm

pz → 1, and otherwise it fails. A specific m-strong team z ∈ Zm succeeds if and only
if pz → 1.

Characterization of the ergodic distribution is straightforward when the players share the
same birth and death costs β and δ. A strategy revision depends only on the number of contrib-
utors in the current state. Hence, to analyse the behaviour of the Markov chain, it is sufficient to
keep track of which layer of the state space is currently occupied.

Formally, the strategy-revision process reduces to a simpler Markov chain with states |zt | ∈
{0,1, · · · ,n}. Writing Pr[Zk → Zk+1] ≡ Pr[zt+1 ∈ Zk+1 | zt ∈ Zk], such a “step up” comprises
two elements. A non-contributor is chosen to revise with probability (n −k)/n. When k �= m −1,
participation is not a best reply, and a birth against the flow of play occurs with probability b.
When k = m − 1, however, the revising player is pivotal to the success of the collective action
and hence joins in with probability 1−d. Summarizing,

Pr[Zk → Zk+1] = n − k

n
×

{
1−d if k = m −1, and

b otherwise.

Similar considerations lead to the “step down” transitions, which occur with probability

Pr[Zk → Zk−1] = k

n
×

{
d if k = m, and

1−b otherwise.

The transitions characterize a simple birth–death process on {0,1, · · · ,n}, and the ergodic
distribution is tied down by detailed-balance conditions. The long-run relative probability for two
neighbouring layers is determined by their relative transition probabilities: Pr[Zk → Zk+1] ×∑

z∈Zk
pz = Pr[Zk+1 → Zk] × ∑

z∈Zk+1
pz . Substituting the step-up and step-down transition

probabilities from above, the relative likelihood of team success vs. failure is∑
z∈Zm

pz∑
z∈Z0

pz
= n!

m!(n −m)!
×

[
b

1−b

]m−1

× 1−d

d
=

(
n

m

)
× exp

(
δ − (m −1)β

ε

)
. (6)

10. An analysis of simultaneous revisions is available in the not-for-publication appendix (www.restud.com).

c© 2008 The Review of Economic Studies Limited



508 REVIEW OF ECONOMIC STUDIES

As ε → 0, the sign of δ − (m − 1)β determines whether this ratio explodes or vanishes.11

Similar calculations confirm that
∑

z∈Zk
pz → 0 for other layers k /∈ {0,m}. Therefore, a com-

parison of (m −1)β and δ establishes whether the team is successful.

Proposition 1. With symmetric players, teamwork succeeds if and only if (m −1)β < δ.

Intuitively, to build a successful team from scratch requires m − 1 volunteers to choose
against the flow of play and contribute to the collective action; for the m-th volunteer, participa-
tion is a (myopic) best reply. In contrast, a successful team is disrupted by the exit of a single
deviant. Proposition 1 reveals that a state-dependent specification is often crucial to team success.
When the “noise” stems from state-independent mutations (constant-probability errors in strategy
revisions) then β = δ, and hence (for m > 2) teamwork always fails. A specification β < δ seems
appropriate when the private cost of a contribution is small (c is small for the Palfrey–Rosenthal
game) and the value of success is large (v is large).

If teamwork succeeds, who will be the members of the successful team? Proposition 1 is
mute: given symmetry, all teams in Zm are equally likely. Asking who participates is interesting
only when players differ in some way. Hence, to take up the second question, attention turns to
an environment in which players’ birth and death costs (generically) differ.12

Without loss of generality, players will be labelled in birth-cost order: β1 < β2 < · · · < βn .
Thus a player with a lower label i is, heuristically, more enthusiastic. Similarly, for states in Zm ,
the team z‡ ∈ Zm in which zi = 1 ⇔ i ≤ m might be called the most enthusiastic team.

When players differ, it is insufficient to track the layer in which the state resides: the identity
of contributors is important. Detailed-balance conditions do not hold in general, and global-
balance conditions are not amenable to direct analysis.13 The literature offers two techniques for
the characterization of the ergodic distribution as noise vanishes. Both begin by identifying the
limit sets of a noiseless strategy-revision process; for this paper, this is when strategy revisions
are myopic best replies. Such a limit set is a subset of communicating states from which the
(noiseless) Markov chain cannot escape. For collective-action games, the limit sets are the

(n
m

)+1
singletons corresponding to pure-strategy Nash equilibria.14

To use the technique popularized by Kandori et al. (1993) and Young (1993) the analyst
builds directed graphs on the space of limit sets that form “trees” leading to a single “root”
limit set. A branch of a tree corresponds to the least-resistant path between two limit sets, and
its “resistance” (for the purposes of the present paper) is the sum of any birth and death costs
encountered along the way. The resistance of a tree is the sum of the resistances of its component
branches. If a tree rooted at a limit set has a strictly lower resistance than any other tree rooted
at any other limit set, then it attracts all probability in the ergodic distribution as noise vanishes.
The limit set in question is “stochastically stable” (Foster and Young, 1990) and its corresponding
Nash equilibrium is “selected”.

The alternative is the radius–coradius technique of Ellison (2000). The “radius” of a limit set
is the difficulty of escaping from it, whereas the “modified coradius” is the difficulty of returning

11. For limε→0
[∑

z∈Zm
pz/

∑
z∈Z0

pz
] = limε→0[exp((δ − (m −1)β)/ε] to hold requires only that (1) holds in

the limit. Hence, while (6) is true only when (1) holds, Proposition 1 holds for limit cases such as (5).
12. βi �= β j and δi �= δ j for all i �= j . These requirements are satisifed generically; they fail only on a set of

Lebesgue measure zero when the parameter space is, for instance, an appropriate subset of R2n . When teamwork does
not succeed and either m ≥ 3 or m = 2 and δ1 > β1, generically

∑
z∈Z0

pz → 1 as ε → 0.
13. There is, however, a class of configurations for which detailed-balance conditions hold; when βi +δi is constant

across the set players. This case admits analysis for non-vanishing noise. See Section 6.
14. The Nash equilibria in Z0 and Zm are absorbing states, and hence automatically limit sets. Since the collective-

action games studied here are acyclic, there are no multiple-member limit sets.
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to it from elsewhere in the state space. If the radius of a limit set exceeds its modified coradius, it
attracts all probability in the ergodic distribution as noise vanishes.

Whereas the radius–coradius approach only provides sufficient conditions for the stochastic
stability of a limit set (and hence “selection” of a Nash equilibrium) tree surgery also provides
necessary conditions. Theorem A1 (Appendix A) uses tree surgery to characterize completely
the stochastically stable sets of evolving collective action, and hence determines which team suc-
ceeds and when. A shortcoming is that the mechanics of tree surgery often fail to reveal why
particular limit sets are stochastically stable. The radius–coradius technique is more helpful in
this regard, since its components are respectively measures of the persistence of a Nash equilib-
rium and its attractiveness. For a collective action, these factors measure the difficulty of building
a team from scratch and the barrier to the disruption of a successful team and its subsequent
collapse back to failure. Overall, this means that the radius–coradius approach can help provide
insight, although the formal results emerging from it are sometimes limited.15 Based on these
observations, this paper takes a somewhat eclectic approach. Whereas the propositions stated
below are derived as corollaries of the aforementioned Theorem A1, the intuition developed
throughout the text (formal proofs are relegated to Appendix C) builds upon the radius–coradius
methodology.

It proves useful to divide the games into three different classes depending upon the relation-
ship between birth and death costs across the set of players.

The first case is when more enthusiastic players (with lower birth costs) are more reluctant
to disrupt a successfully operating team (they have high death costs). Given that players are
labelled in birth-cost order (so that β1 < · · · < βn) this obtains when death costs are decreasing:
δ1 > · · · > δn . The members of the most enthusiastic team z‡ are the hardest to kill, and so the
candidates for stochastic stability are z‡ and the team-failure state in Z0.

To calculate the persistence of team failure, consider the “basin of attraction” of Z0. This is
the set of states from which a noiseless process (myopic best reply) will always descend down
into Z0; it consists of layers Zm−2 and below. To escape from this basin, beginning from team
failure a successful team must be built from scratch, requiring m − 1 players to voluntarily join
the collective action. The easiest way to do this is for the m −1 most enthusiastic players to vol-
unteer, at a total birth cost of

∑m−1
i=1 βi . Using Ellison’s (2000) terminology, this is the radius of

Z0. This term also indexes the attractiveness of z‡. Intuitively, the team-failure state is “furthest
away” from z‡. The easiest way to return back to z‡ is for the m −1 most enthusiastic players to
volunteer, so that

∑m−1
i=1 βi provides an upper bound to how far away the process can go; using

Ellison (2000) terminology once more, this is the coradius of z‡. Taken together, the m −1 lowest
birth costs measure the attractiveness of team success and the persistence of team failure. How-
ever, a determination of the stochastically stable set also requires consideration of the persistence
of success and the attractiveness of failure.

The attractiveness of failure depends upon the ease with which a successful team collapses.
Beginning from the most enthusiastic team z‡, one way to collapse is for one of the team members
to die. The team member with the lowest death cost is player m, and hence a death cost of δm

allows the process to move down to layer Zm−1. From there, a myopic best-reply by a contributor
will lead to a further step down into the basin of attraction of Z0. Hence δm is an upper bound to
the distance of z‡ from Z0 and is a candidate for the coradius of Z0. Certainly, if

∑m−1
i=1 βi > δm

then the collective action will fail.
There can be easier ways for the team to collapse. Beginning from z‡, suppose that player

j > m volunteers to join the collective action (overcoming a birth cost β j ) and becomes the

15. For collective-action games there are circumstances in which the tree-surgery approach can provide predictions
whereas the radius–coradius analysis cannot; a specific example is provided in footnote 16.
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(m + 1)-th contributor. If player i ≤ m subsequently encounters a strategy-revision opportunity,
a myopic best reply will bring the process back down into some state z ∈ Zm ; starting from the
most enthusiastic team, player i ≤ m has been replaced by player j > m. Now suppose that player
j is chosen to revise once more, and then dies (overcoming a death cost δ j ), so that the process
steps down to Zm−1. If β j + δ j < δm , then this indirect route is an easier path of escape from z‡.
The quickest indirect route arises when j > m is chosen to minimize β j + δ j . Combining these
observations, the coradius of Z0 is min[δm,min j>m[β j + δ j ]].

An even tighter bound on the attractiveness of team failure can be obtained. The “replace i
with j” route passes through an intermediate limit set (that is, the state z ∈ Zm discussed above)
of the noiseless myopic best-reply process. This means that the birth and death of player j do
not need to happen consecutively; the process can remain at z for some time and wait for j to
be offered the revision opportunity. Ellison’s modified coradius incorporates this “step by step”
evolution; the appropriate adjustment to the resistance of the path is to deduct the radius of the
intermediate limit set. Now, the radius of z is the easiest way out. This is either the easiest death,
which must be player j and has a death cost of δ j , or the birth of the most enthusiastic player from
outside z. This outside enthusiast must, of course, be player i : the team member from the most
enthusiastic team whom player j supplanted. Putting these observations together, z has a radius
of min[δ j ,βi ] and the modified resistance of the step-by-step route is β j + δ j −min[δ j ,βi ]. This
expression is minimized when the radius of the intermediate step is large. This is so when i = m,
so that j supplants the least enthusiastic member of the most enthusiastic team. Choosing player
j to minimize this expression generates the easiest indirect route out of z‡, with a total resistance
of

δ‡ ≡ min
j>m

[β j + δ j −min[δ j ,βm]].

Comparing direct and indirect routes, the modified coradius of z‡ is simply min[δm,δ‡].
Following from this, a sufficient condition for team failure (which can be derived from the radius-
coradius theorem) is

∑m−1
i=1 βi > min[δm,δ‡]. In fact, this criterion is also necessary.

Proposition 2. When death costs are decreasing (enthusiastic players are the hardest to
kill) the most enthusiastic team succeeds if

∑m−1
i=1 βi < min[δm,δ‡]; otherwise teamwork fails.

Proposition 2 reveals two “bad apple” effects. One possible disruption to the collective ac-
tion is the departure of a member of z‡; this player is a bad apple who spoils the barrel from
within. To soften this effect, the death costs of members should be high. This is why it makes
sense for player m (with a death cost higher than all players j > m) to form the final member
of the successful team, even though only the m −1 most enthusiastic players are required for its
construction. When δm < δ‡, the bad apple (player m) within the team is the weakest link. In
contrast, when δm > δ‡ the bad apple enters from outside the team: player j enters and becomes
the superfluous (m + 1)-th contributor, enabling the myopic departure of an incumbent. It is the
subsequent death of player j that causes the final collapse.

When the bad-apple effect stems from outside the team, player j > m is not an established
member of a successfully operating team, and yet is a critical determinant of that team’s success
or failure. Thus, an answer to “when will the collective action succeed?” must begin by evaluating
the characteristics of those who will eventually free ride on any success.

Proposition 2 deals with enthusiasts who are hard to kill. A second case is when enthusiasts
are easy to kill, so that δ1 < · · · < δn . The most enthusiastic team is also the flakiest; the easiest
way to disrupt z‡ is for the most enthusiastic player (with the lowest birth cost β1 and the lowest
death cost δ1) to drop out, and so the bad apple always spoils the team from within. This suggests
that the collective action fails if and only if

∑m−1
i=1 βi < δ1.
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Proposition 3 verifies this hypothesis. However, care must be taken to ensure that those that
provide (if indeed they do) are enthusiasts. The reason is that enthusiasts create the bad-apple-
inside effect that disrupts teamwork. One possibility, then, would be to replace the flakiest team
member with a less enthusiastic but more reliable substitute. Consider, for instance, a team z ∈ Zm

identical to z‡ except for the fact that player j > m supplants player 1. The cost of building z
from scratch is

∑m
i=2 βi , a net increase of βm −β1 relative to the cost of building z‡. However,

the death cost of the bad apple within the team rises to δ2. So, when δ2 − δ1 > βm −β1, is z a
better candidate than z‡ for long-run success? Unfortunately not. The reason is that whenever
this trick might work, it is undone by the fact that the quickest way out of z and back to team
failure is for player 1 to jump back in the team and then die. What this means is that z is more
robust to disruption only when there is no hope for team success in the first place. Proposition 3
summarizes.16

Proposition 3. When death costs are increasing (enthusiastic players are the easiest to
kill) the most enthusiastic team succeeds if

∑m−1
i=1 βi < δ1; otherwise teamwork fails.

Propositions 2 and 3 deal with two extreme cases. In the former, birth and death costs are
perfectly negatively related: a higher birth cost is always associated with a lower death cost. In
the latter, the reverse is true. Negative correlation might be seen as helpful for team success since
the bad apple is the player with the m-th-highest death cost. In contrast, with positive correlation
the bad-apple effect occurs via the lowest death cost. Of course, in general, the death costs may
be arbitrarily ordered in relation to the birth costs.

For the general case, note first that the m − 1 lowest birth-cost players must still play a
role.17 Any team that excludes these players certainly costs more to build. As a result negative
correlation between birth and death costs, raising the death costs of these m −1 players, can only
be good for team success. Second, consider a bad apple ( j ≥ m) resident outside a team. As a
route via which the team is destabilized, this exit is less effective whenever, for a fixed death cost,
the birth cost is higher; or vice versa. Again, heuristically at least, negative correlation between
birth and death costs has a positive impact upon team success.

Some language assists a more formal discussion: denote an ordering of death costs δ =
(δi )

n
i=1. Fix the (ordered) values of the birth costs. A permutation of the same death costs δ̂

“favours team success” if whenever a team succeeded under δ a (possibly different) team certainly
will succeed under δ̂.18 Different permutations of death costs retain the marginal distributions of
birth and death costs, but change the joint distribution of their ranks (the empirical copula):

C(x, y) ≡
n∑

i=1

I[βi ≤ β(x)]×I[δi ≤ δ(y)] =
x∑

i=1

I[δi ≤ δ(y)],

where β(i)(= βi ) is the i-th lowest birth cost, and similarly for δ(i). Different orderings of death
costs correspond to different copulae. It remains to define a measure of association.

Definition 2. C is more concordant than Ĉ if and only if C(x, y) ≥ Ĉ(x, y) for all x and y.

16. The increasing death-cost case illustrates the limitations of Ellison’s (2000) method. Suppose that δ1 >∑m−1
i=1 βi > βm+1. The radius of z‡ is βm+1. The modified coradius is (at least)

∑m−1
i=1 βi . This is larger than radius,

and a direct application of Ellison’s method is impossible; yet (Proposition 3) the team z‡ succeeds.
17. The m −1 most enthusiastic players will always be members of any successful team, following from the argu-

ment preceding Proposition 3. This claim is formally verified as part of Theorem A1 (Appendix A) which provides a full
characterization of the ergodic distribution for vanishing noise for any death-cost ordering.

18. A permutation of δ is an ordering δ̂ such that for each i , δ̂i = δ j for some j , (and vice versa).
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Concordance provides a (partial) ordering over copulae. Equivalently, since birth costs are
arranged in size order, it is a partial ordering over death-cost permutations. A more concordant
permutation shifts low death costs towards the players with low birth costs.19

Proposition 4. A decrease in concordance favours team success. Hence decreasing death
costs are most favourable to success, and increasing death costs are least favourable. A sufficient
condition for success is

∑m−1
i=1 βi < δ(1); a necessary condition is

∑m−1
i=1 βi < δ(n−m+1).

Section 5 provides examples of these four propositions at work. Note, however, that the
population size n has had little impact upon the results: for vanishing noise, it is only the minimum
cost routes in and out of teams that determine selection, and therefore only particular individuals
play any role. For non-zero noise, however, there is high probability that any player may join or
leave a functioning team, and the population plays a more evident part in evolving play. This is
the focus of Section 6; bad-apple effects remain critical.

5. ON THE SUCCESS OF A COLLECTIVE ACTION

Propositions 1–4 take as primitive the somewhat abstract pattern of birth and death costs. This
section returns to the more focused setting of a threshold public-good provision game.

If players value the public good in the same way (they have symmetric valuations) then a
threshold public-good provision game (Palfrey and Rosenthal, 1984) arises from the specification
ui (z) = v ×I[|z| ≥ m]− zi ci , where players are ordered so that 0 < c1 < · · · < cn < v . As noted
in Section 2, this specification generates a contribution incentive

�ui (z) = v ×I[zi+ ∈ Zm]− ci .

Given that ci < v , it is privately optimal for player i to participate if m −1 others do so. This
means that it is socially optimal for the collective action to succeed, although looking across the
m-th layer Zm , players’ preferences differ over team-success equilibria; each would rather free
ride than provide. When welfare is the utilitarian sum of pay-offs, it is socially optimal for the m
most efficient players (with the lowest contribution costs) to provide.

Despite the social optimality of success, teamwork may fail since an individual player is
unable unilaterally to provide the public good; this is the essence of the teamwork dilemma. If
an individual were able unilaterally to provide, would the collective action succeed? To answer,
consider what would happen if an individual were able to compensate others for their private
costs, but unable to capture the positive externalities from provision. The most efficient way to
provide would be to hire the m most efficient players at a total cost of

∑m
i=1 ci . Doing so could

then be in the interests of a private individual so long as v >
∑m

i=1 ci .

Definition 3. A symmetric-valuation collective action is privately feasible ⇔ v >
∑m

i=1 ci .

When a collective action is privately feasible the coordination problem is the source of
any team failure; after all, an individual, responding to private benefits and costs alone might
profitably provide if only able to do so. In contrast, when the collective action is not privately
feasible there is an additional barrier to success: private costs exceed private benefits, and hence
the lack of internalization of positive externalities works against public-good provision.

19. The set of permutations form a lattice with maximal and minimal members which correspond to perfect con-
cordance and perfect discordance, respectively. An increase in concordance implies an increase in the standard empirical
measures of association, such as Spearman’s ρ and Kendall’s τ .
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The criterion for private feasibility is easiest to satisfy when the public good is valuable and
contribution costs are low. For instance, a shift down in the distribution of costs, in the usual
sense of first-order stochastic dominance, favours private feasibility. In fact, since it is the sum of
the lowest costs that is important, an increase in the riskiness of the distribution of costs, in the
sense of second-order stochastic dominance, will also favour private feasibility.

Under logit quantal response, private feasibility is related to the stochastic stability of the
most enthusiastic team. From Section 2, birth and death costs satisfy βi = ci and δi = v − ci .
The most enthusiastic team is also the most efficient team. Furthermore, a player with a low cost
of contribution (and hence a low birth cost) has a high death cost; enthusiasts are efficient and
hard to kill. This scenario fits the “decreasing death cost” case of Proposition 2, and so the most
enthusiastic (and efficient) team succeeds if and only if

∑m−1
i=1 βi < min[δm,δ‡]. When δm < δ‡,

so that the easiest way to disrupt the most enthusiastic team is via the direct death of its flakiest
member, the team-success criterion becomes

∑m−1
i=1 ci < v − cm , or equivalently

∑m
i=1 ci < v .

This, of course, is the criterion for private feasibility.
In turns out that private feasibility is also the right criterion when the bad apple who spoils

the barrel enters from outside the most enthusiastic team. Notice that β j + δ j = v , and so

δ‡ = min
j>m

[
v −min[v − c j ,cm]

] = max[cm+1,v − cm] ⇒ min[δm,δ‡] = v − cm .

Hence the effect of a bad apple from outside the team can never be strong enough to disrupt
the team any more than its own least-enthusiastic member. Summarizing:

Proposition 5. Consider a threshold public-good provision game with symmetric valua-
tions. When play evolves via logit quantal response, the most enthusiastic team succeeds if and
only if the collective action is privately feasible. Team success is favoured by (i) a shift down in
the distribution of costs, and (ii) an increase in the riskiness of the distribution of costs.

Proposition 5 reveals characteristics of the contributor pool that assist success: not only is
it helpful for costs to be low, it is also helpful if the abilities of potential contributors are varied.
A project’s success hinges upon the abilities of the m lowest-cost contributors, and variation in
provision costs helps to make the best even better.

Proposition 5 restricts to a scenario in which players share the same valuation for the public
good. Variation in vi can generate additional heterogeneity in the death costs. The implications
depend upon the relationship between contribution costs and valuations.

Suppose that the public good is highly valued by enthusiasts. A negative relationship be-
tween valuation and cost ensures that enthusiasts have high death costs. Since they are most
likely to form a successful team, this pattern of valuations and costs minimizes disruption and so
favours success. Alternatively, the public good may be of little use to enthusiasts. This may lead
to concordant birth and death costs, and hence (Proposition 4) this favours failure.20

Proposition 5 reveals that a riskier distribution of contribution costs helps private feasibility
and team success. But what of the distribution of valuations? Suppose that contribution costs are
negatively related to valuations, so that enthusiastic players prize the public good. The bad apple
in a successful team of enthusiasts is player m, with the m-th highest valuation and a death cost
of δm = vm − cm . If m < n/2 then this player’s valuation is above average, in the sense that it

20. For open-source software (an example noted in Section 1) the first scenario might correspond to a networking
utility, which is useful for skilled programmers who are best able to contribute to its development. The second scenario
might apply to a word processor; skilled programmers (the enthusiasts) might prefer a simple text editor, and so place
little value on the public good. These examples of positive and negative correlation were also identified by Johnson (2002)
who modelled software provision as a volunteer’s dilemma.
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is above the median. An increase in the riskiness of the valuation distribution, in the sense of
a median-preserving spread, will push up vm and therefore raise the death cost δm ; this favours
team success. If m > n/2, then the opposite logic applies.

Proposition 6. Consider a threshold public-good provision game where contribution costs
are negatively related to valuations, and where play evolves via logit quantal response. An in-
crease in the riskiness of the valuation distribution, in the sense of a median-preserving spread,
will favour team success if m < n/2, but will favour team failure if m > n/2.

Propositions 5 and 6 are concerned with distributions looking across the set of players;
stealing terminology from econometrics, this is the “between” dimension of the panel of players.
Whereas the average valuation and cost may vary across the player set, from the random-utility
interpretation of a quantal response, the realized valuation and contribution cost of an individual
player may vary over time; this is the “within” dimension of the panel.

The effects of “within” variation are neatly illustrated using a probit specification. Let all
players share the same average pay-offs, so that �ui (z) = c or �ui (z) = v − c depending on
whether player i is pivotal to the collective action. Next, set γ 2

i = ξ2
i for all i . Then,

βi = c2

2ξ2
i

, and δi = (v − c)2

2ξ2
i

.

Notice that birth and death costs are both inversely related to the variance parameter ξ2
i .

Hence players with the lowest birth costs are enthusiastic not because they are efficient but rather
because their pay-offs are particularly idiosyncratic; a birth-cost ordering leads to ξ2

1 > · · · > ξ2
n .

This means that enthusiasts have the lowest death costs, and so are the flakiest players. Following
Proposition 4, such a positive relationship between birth and death costs favours the failure of
the collective action.21 Furthermore, the presence of a player with a particularly high pay-off
variance can result in team failure: collective projects may collapse when they attract the interest
of particularly noisy individuals.

For the final result of this section, the focus returns to symmetric players, so that (Proposi-
tion 1) the collective action succeeds if and only if (m − 1)β < δ. Under a probit specification,
the death cost δ of a player is determined by the variance of ṽi − c̃i . This is, in turn, affected by
any “within” correlation between valuation and contribution cost. For instance, if[

c̃i

ṽi

]
∼ N

([
c
v

]
,ε ×

[
ξ2 ρξ�

ρξ� � 2

])
⇒ δ = (v − c)2

2× [ξ2 +� 2 −2ρξ� ]
,

then ρ is the correlation coefficient between the random-utility valuation and contribution-cost
realizations of a player. An increase in this correlation increases the death cost δ, while leaving
the birth cost unchanged, and hence favours the success of the collective action.

Proposition 7. Consider a symmetric threshold public-good provision game where play
evolves via probit quantal-response. An increase in the correlation in the cost and valuation
realizations of each individual reduces death costs and so favours team success.

21. This argument, based upon the heteroskedasticity of players’ quantal responses, may also be made using a logit
quantal-response specification. To do this, modify (2) so that

Pr[zi,t+1 = 1]

Pr[zi,t+1 = 0]
= exp

(
�ui (z)

λi × ε

)
, where �ui (z) =

{
v − c |zi+| = m,

−c otherwise.

The parameter λi then indexes the idiosyncrasy of player i’s noisy pay-offs.
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Intuitively, a team member “dies” whenever ṽi − c̃i < 0. This can happen when a player’s
contribution cost experiences a positive shock. However, if that player’s contribution cost and
public-good valuation are positively correlated then this will be offset by a likely positive shock
to the valuation. Positive correlation reduces the “within” variability of the difference between
valuation and cost for a player, and so enhances the stability of a successful team.

There is a contrast between the messages emerging from Propositions 4 and 7. Looking
across the player set (the “between” dimension of a panel) negative correlation creates the de-
sirable discordance between birth and death costs; enthusiasts are reliable, and this favours team
success. In contrast, looking at the pay-off realizations of a player across time (the “within” di-
mension) negative correlation favours team failure. Hence, when thinking about correlation, it is
important to distinguish the “within” and “between” dimensions.

6. WELFARE AND THE CONTRIBUTOR POOL

This section studies evolving play when noise is bounded away from zero, so that quantal-
response strategy revisions do not necessarily approximate best-replies. This is desirable because
the stochastic-stability results presented in earlier sections omit important factors. For instance,
and as noted in Section 4, the size n of the contributor pool plays no role, because only the easiest
routes in and out of limit sets matter. However, if the quantal-response noise ε is fixed and n is
allowed to rise, then an inspection of (6) reveals that the relative likelihood of team success vs.
failure can grow without bound: there is a larger pool of potential contributors who can help to
build a successful team.

Progress is facilitated by restricting to play that evolves via logit quantal response, so that

Pr[zi,t+1 = 1]

Pr[zi,t+1 = 0]
= exp

(
�ui (zt )

ε

)
,

and by assuming that all players value the public good symmetrically. For the threshold game
considered previously, this means that vi = v for all i . Fortunately, the techniques employed here
permit consideration of a more general class of public-good provision games in which production
is a general increasing function G(·) of the number of contributions:

ui (z) = G(|z|)− ci zi .

The threshold game studied so far is obtained by setting G(|z|) = v × I[|z| ≥ m]. With
symmetric valuations, birth and death costs in a threshold game satisfy βi = ci and δi = v − ci ,
so that βi + δi = v . Birth and death costs are perfectly negatively correlated, and so perfectly
discordant. Applying Proposition 2, the most enthusiastic (and efficient) team succeeds if and
only if the collective action is privately feasible. The notion of private feasibility is also useful
when quantal-response noise is retained and when a general form for G(·) is permitted.

Definition 4. For a symmetric-valuation public-good provision game evolving via logit
quantal response, the private feasibility of a state z is ψ(z) = G(|z|)−∑n

i=1 ci zi .

This index of private feasibility comprises a private valuation G(|z|) for the public good
minus the sum of any private costs. Observe that ψ(zi+)−ψ(zi−) = ui (zi+)−ui (zi−) ≡ �ui (z),
so that the contribution incentive is the effect of a player’s participation on the private feasibility
of provision. This means that ψ(z) is an exact potential function (Monderer and Shapley, 1996)
and the collective action is an (exact) potential game.
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When the play of an exact potential game evolves via logit quantal response, the relative
likelihood of jumping back and forth between two neighbouring states is determined by the dif-
ference in their potentials. For a binary-action game with an exact potential,

ε × log
Pr[zi− → zi+]

Pr[zi+ → zi−]
= �ui (z) = ψ(zi+)−ψ(zi−). (7)

The potential of a state pins down its ergodic probability (Blume, 1997). Formally, consider
a distribution pz ∝ exp[ψ(z)/ε]. This is in detailed balance for all pairs of states, so that pz ×
Pr[z → z′] = pz′ × Pr[z′ → z] for all such pairs.22 To see this, note that for states that do not
directly communicate (they differ by more than one action) the transition probabilities are zero,
and so the detailed-balance condition is trivially satisfied. Suppose, instead, that z and z′ differ
only by the action of i , so that z = zi− and z′ = zi+. Then,

pz′

pz
= exp

[
ψ(z′)−ψ(z)

ε

]
= exp

[
ui (z′)−ui (z)

ε

]
= Pr[zi− → zi+]

Pr[zi+ → zi−]
,

where the final equality follows from the application of (7) above, and so the detailed-balance
condition is satisfied once more. This ensures that pz is the unique ergodic distribution.23

Proposition 8. When the play of a symmetric-valuation public-good provision game with
a general production function G(·) evolves via logit quantal response,

pz = exp[ψ(z)/ε]∑
z′∈Z exp[ψ(z′)/ε]

where ψ(z) = G(|z|)−
n∑

i=1

ci zi .

Hence the long-run probability of a state is determined by its private feasibility.

Setting G(0) = 0 the no-contribution state in Z0 has a potential of zero. If G(|z|)<
∑n

i=1 ci zi

for all |z| > 0 then, heuristically, the collective action is privately infeasible. This means that in
the long run, the failure of a collective action stems not from the coordination problem emerging
from the teamwork dilemma, but rather from the classic problem described by Olson (1968):
players fail to internalize the externalities of provision.

Attention now returns to the bad-apple effects that were central to Propositions 1–7. In the
context of a threshold game, a bad apple is either (i) the weak link within the most enthusiastic
team; or (ii) a player from outside the most enthusiastic team who destabilizes the team by
supplanting a more reliable team member. For the more general provision games considered
here, a bad apple is a player with an intermediate value of ci : low enough so that the player
will volunteer now and again, but high enough to ensure that the player tends to abandon a
successful collective action with relatively high probability. The bad-apple effect is present for
non-vanishing noise if the presence of such a player tends to hurt welfare.

Welfare is the utilitarian sum of pay-offs: w(z) ≡ ∑n
i=1 ui (z) = nG(|z|)−∑n

i=1 zi ci . In the
long run, z is played with probability pz , and hence (long run) expected welfare is

W ≡
∑
z∈Z

[pz ×w(z)] =
∑
z∈Z

[
exp

[
ψ(z)/ε

]∑
z′∈Z exp

[
ψ(z′)/ε

] ×w(z)

]
.

22. Blume (1997) observed that detailed-balance conditions are satisfied for play evolving by a log-linear choice
rule (that is, logit quantal response) if and only if the game admits an exact potential function.

23. Proposition 8 applies to a more general class of public-good provision games (Myatt and Wallace, 2007). Allow
each player’s action zi to be chosen from a finite set at a private cost of ci (zi ), and specify production G(z) to be a general
function of the entire strategy profile. Set a player’s pay-off to ui (z) ≡ G(z)− ci (zi ). This general game has an exact
potential ψ(z) = G(z)−∑n

i=1 ci (zi ), and Proposition 8 continues to hold.
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W reflects the tension between private and social interests: whereas welfare in state z is
w(z), its ergodic probability is determined by the private feasibility ψ(z), which neglects exter-
nalities of (n −1)G(|z|). Proposition 9 confirms that bad apples hurt welfare.24

Proposition 9. Social welfare is a strictly quasi-convex function of each player’s private
cost of contribution: starting from zero, W is first decreasing in ci and then increasing in ci .

To prove this claim informally, note that a small increase in ci has two effects: (i) it reduces
welfare w(z) for all states in which i contributes; and (ii) it makes those states less likely. The
latter effect may help if player i is a relatively inefficient contributor. Hence, if (ii) dominates (i),
then expected welfare will increase. If this is so, consider a further increase in ci . The negative
effect (i) is felt less severely, since i contributes less frequently. Effect (ii), however, is enhanced.
It is now more desirable to stop i participating, because of the higher contribution cost. Sum-
marizing: once (ii) dominates (i), then this dominance continues for higher values of ci . This
ensures that W is a quasi-convex function of ci .25

Since W is in essence a “U-shaped” function of ci , players with intermediate contribution
costs are bad for welfare; it is (socially) preferable for costs to be low (so that a player is an effi-
cient contributor) or high (so that the player rarely volunteers, and hence does not supplant more
efficient contributors). For the latter case, allowing ci → ∞ is equivalent to excluding player i
from the contributor pool. A straightforward corollary of Proposition 9 is that when a player has
a sufficiently high contribution cost (so that ci ≥ c∗

i ) expected welfare would be enhanced by
preventing player i from volunteering. This argument suggests a rationale for limiting the size
of the contributor pool; this will serve to exclude the unwanted bad apples. A natural question
suggests itself: who should be excluded?

To answer, write W+
i for the welfare from a process where player i is forced to participate,

and W−
i for welfare when i is excluded. The proof of Proposition 10 (Appendix C) confirms

that it is optimal to admit i to the contributor pool (so that W > W−
i ) if and only if W+

i > W−
i .

That is, player i should be allowed to contribute voluntarily if and only if a social planner would
ideally coerce player i into participating. Clearly, such coercion is more desirable when player i’s
contribution cost is low. More generally, if a social planner could choose the pool of contributors
(whilst ensuring that the benefits from any provision continue to be enjoyed by all) then the
contributor pool should be limited to the more efficient players.

Proposition 10. Consider a symmetric-valuation public-good provision game evolving via
logit quantal response. Welfare is enhanced by excluding player i from the contributor pool if and
only if ci is sufficiently large. The welfare-maximizing contributor pool consists of the most en-
thusiastic n∗ players. Specializing to a threshold game, either n∗ = 0 or n∗ ≥ m. If the collective
action is privately feasible, then n∗ = m for ε sufficiently small.

The final claims concern threshold games: when the collective action is privately feasible
z‡ is stochastically stable, and so W → w(z‡) as noise vanishes so long as the members of z‡

can participate. Now, w(z‡)− W+
i ≥ cm+1 − cm > 0 for all i > m, and hence (for small ε) it is

optimal to exclude all players i > m: they can only harm the efficiency of provision.
This section concludes by returning to the classic message of Olson (1968). His focus was

the relationship between the likelihood of failure of a collective action and the size of the group
involved, where his notion of group size corresponded to the number n who consume the public

24. Proposition 9 holds when production is a general function G(z) of the contribution profile.
25. The same logic was used by Myatt and Wallace (2007, Proposition 1) in a paper which provides an evolutionary

justification for the use of thresholds in collective-action problems.
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good. He assumed that, for a fixed private valuation of a public good, the cost of provision
increases with n, and so he predicted that large groups would fail to provide public goods. For a
threshold game, this comparative-static exercise corresponds to an increase in

∑m
i=1 ci following

an increase in n. This reduces private feasibility and hinders team success.
There is, however, an alternative interpretation of group size: the depth of the pool of po-

tential contributors, and hence the number who may supply the public good. Here, the results of
this paper provide new insights. Whereas it may be optimal for the contributor pool to exceed a
critical mass required for success (for threshold games, it may be that n∗ > m for larger ε) nev-
ertheless the bad-apple effect serves to limit the effectiveness of large player sets. A collective
action can succeed when it relies on a select group of enthusiasts.

APPENDIX A. THE ERGODIC DISTRIBUTION FOR VANISHING NOISE

Long-run play depends upon the rates at which transition probabilities vanish as ε → 0. Such a rate is the “expo-
nential cost” E of a probability (Myatt and Wallace, 2003). E ∈ R+ ∪{∞} is defined for a continuous function p(ε) if
either p(ε) = 0 for all ε > 0, in which case E = ∞, or if the limit E = − limε↓0 ε log g(ε) exists. This property is denoted
p(ε) = õ (E) or E(p(·)) = E and means that p(ε) behaves as exp(−E/ε) does as ε → 0. For a set {pl (ε)} with exponential
costs {El },∏

õ(El ) = õ
(∑

El
)
,
∑

õ(E) = õ (minEl ) , a × õ(E) = õ(E), and El > El′ ⇒ lim
ε→0

õ(El )
õ(El′ )

= 0. (8)

Given the exponential-cost definition, the birth cost of a contribution against the flow of play is βi ≡ E(bi ). Similarly,
the death cost is δi ≡ E(di ), and moreover E(1−bi ) = E(1−di ) = 0. The specification (1) in the text yields well-defined
birth and death costs, and when play of a threshold public-good provision game evolves via logit quantal response, these
satisfy βi = ci and δi = vi − ci . Lemma 1 confirms that birth and death costs also exist for probit quantal responses.

Lemma 1. If play of the collective-action game evolves by probit quantal response, so that player i chooses to
contribute if and only if �ũi (z) > 0 where �ũi (z) ∼ N (�ui (z),ε ×σ 2

i (z)), then

E (Pr[�ũi (z) > 0]) ≡ − lim
ε→0

ε logPr[�ũi (z) > 0] = [�ui (z)]
2

2×σ 2
i (z)

. (9)

When play of threshold public-good provision game evolves via probit quantal response where (3) and (4) hold, then
E(bi ) = βi and E(di ) = δi where βi = c2

i /(2ξ2
i ) and δi = (vi − ci )

2/(2γ 2
i ).

Proof. If �ui (z) > 0 then Pr[�ũi (z) > 0] → 1 as ε → 0, and so E(Pr[�ũi (z) > 0]) = 0. If �ui (z) > 0 then write
E for the R.H.S. of (9). Pr[�ũi (z) > 0] = 1−�(x) where x = √

2E/ε and �(·) is the distribution of the standard normal.
From a change of variable from ε to x ,

− lim
ε→0

[
ε × logPr[�ũi (z) > 0]

] = E× lim
x→∞

[
− 2log[1−�(x)]

x2

]
= E× lim

x→∞

[
φ(x)/[1−�(x)]

x

]
= E,

where φ(·) is the density of the standard normal. The penultimate equality follows from an application of l’Hôpital’s rule
as x → ∞, and the final equality follows from the asymptotic linearity of the hazard rate of the normal distribution. The
remaining claims of the lemma follow from substitution of the expressions for �ui (z) and σ 2

i (z) from (3) and (4) in the
main text. ‖

Lemma 1 verifies (5) in the text, so that birth and death costs are defined for the probit specification. They are also
defined for a wider class of models. Following footnote 8, suppose that the noise in �ũi (z) is drawn from the generalized
error distribution (equivalently, the exponential power distribution). This has a density f (x) ∝ exp(−|x |ν), where ν is a
tail-thickness parameter; the normal is obtained for ν = 2. Exponential costs then take the form E ∝ [�ui (z)]

ν .
If birth and death costs are defined, (8) ensures that the exponential costs of transition probabilities are defined.

Writing Ezz′ ≡ E(Pr[z → z′]), an application of (8) yields the following lemma.

Lemma 2. Suppose z′ �= z. If there is no i s.t. z′ = zi+ or z′ = zi− then Ezz′ = ∞. Else,

z′ = zi+ ⇒ Ezz′ =
{

βi z /∈ Zm−1,

0 z ∈ Zm−1
and z′ = zi− ⇒ Ezz′ =

{
δi z ∈ Zm ,

0 z /∈ Zm .

c© 2008 The Review of Economic Studies Limited



MYATT & WALLACE COLLECTIVE-ACTION GAMES 519

For ε > 0, there is a unique ergodic distribution p = {pz}z∈Z . A graph-theoretic technique will be used to charac-
terize p as ε → 0. A “tree rooted at z” is a directed graph (a subset h ⊆ Z × Z ) such that each node z′ �= z has a unique
successor. All sequences of edges lead to z, which has no successor. The set of trees rooted at z is Hz . From Freidlin and
Wentzell (1998):

Lemma 3. p satisfies pz = qz/
∑

z′∈Z
qz′ , where qz = ∑

h∈Hz

∏
(s,s′)∈h Pr[s → s′].

The relative likelihood of z and z′ may be assessed via qz/qz′ . Unfortunately the expression in Lemma 3 may be
complicated in general. However, as ε → 0 only certain trees matter, greatly simplifying calculations. Abusing notation,
write Eh ≡ ∑

(z,z′)∈h Ezz′ for the exponential cost of the product of the transition probabilities taken from the branches
of the tree. Applying (8),

E(qz) = E
(∑

h∈Hz

∏
(s,s′)∈h

Pr[s → s′]
)

= min
h∈Hz

E
(∏

(s,s′)∈h
Pr[s → s′]

)
= min

h∈Hz
Eh .

From (8), E(qz) < E(qz′ ) ⇒ limε→0[qz′/qz ] = 0, so a tree with a root at z that has a lower exponential cost than
any tree rooted at z′ has infinitely more weight in the limit. Thus the states with minimum-exponential-cost rooted trees
are “selected” as ε → 0; they are stochastically stable.

Lemma 4. States in Z† attract all probability in the limit: limε→0
∑

z∈Z† pz = 1, where

Z† =
{

z ∈ Z : min
h∈Hz

{Eh} ≤ min
z′∈Z

min
h′∈Hz′

{Eh′ }
}

.

A further abuse of notation is this: E(z) is the exponential cost of the least-cost tree rooted at z. So, if E(z) < E(z′)
for all z′ �= z, then z is selected. Recall that, without loss, birth costs are ordered β1 < · · · < βn . The “most enthusiastic
team” is z‡ ≡ {z ∈ Zm : zi = 1 ⇔ i ≤ m}. Define κ ≡ argmini<m [δi ] and ι ≡ argmini≤m [δi ]; these are the players with the
smallest death costs amongst the first m −1 and m players. Let µ ≡ argmaxi>m [δi ], the player with the largest death cost
outside the most enthusiastic team. Let Z� = {z ∈ Zm : zi = 1∀ i < m and for some i > m}. The team with the m −1 most
enthusiastic players and some other player j > m will be labelled z j ∈ Z�. Finally, Zµ = {z j ∈ Z� : δ j > min[δκ ,βm ]},
teams with the most enthusiastic m −1 players and some other relatively high death-cost player.

Theorem A1. If δι ≥ min[δµ,βι] and

m−1∑
i=1

βi < min[δ‡,δι] where δ‡ ≡ min
j>m

[
β j + δ j −min[βm ,δ j ]

]
,

then E(z‡) < E(z) for all z �= z‡; the most enthusiastic team succeeds. If δι < min[δµ,βι] and ι = m,

m−1∑
i=1

βi < δµ < min[δκ ,βm ] ⇒ E(zµ) < E(z) for all z �= zµ, and

m−1∑
i=1

βi < min[δκ ,βm ] < δµ ⇒ E(z j ) = E(zk ) < E(z) for all z j , zk ∈ Zµ and z /∈ Zµ;

so teamwork succeeds but without player m. Otherwise E(z0) ≤ E(z) for all z �= z0; teamwork fails.

The proof compares the least exponential-cost rooted trees at different states. Before proceeding, Lemmas 5–8 reveal
the least-cost rooted trees for the states of interest. Each includes the term

A =
∑

z∈Zm

min
i∈N

[
zi δi + (1− zi )βi

]
.

Inspection reveals that this is the sum of the least exponential-cost exits from each state in Zm .

Lemma 5. The least exponential-cost tree rooted at state z‡ satisfies

E(z‡) = A −min[δι,βm+1]+
m−1∑
i=1

βi .
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Proof. Consider a tree rooted at z‡. There is no exit from z‡, but exits are required for all z ∈ Zm where z �= z‡.
Total costs of exits from Zm are therefore at least A −mini∈N [z‡

i δi + (1− z‡
i )βi ]. The tree includes a path of transitions

from Z0 into Zm . Such a path involves a transition from Z0 to Z1, from Z1 to Z2, and so on. Each such transition
includes an additional birth cost. The least costly way to reach Zm−1 is to acquire the m − 1 players with the least birth
costs; this has exponential cost of at least

∑m−1
i=1 βi . A final step into Zm (adding player m) may be taken at zero cost,

and gives a path that moves as quickly (and cheaply) as possible from Z0 to z‡ ∈ Zm . Hence

E(z‡) ≥ A − min
i∈N

[
z‡
i δi + (1− z‡

i )βi

]
+

m−1∑
i=1

βi . (10)

This expression provides a lower bound to the exponential cost of any tree rooted at z‡. It incorporates transitions
out of all states in Zm , as well as the path from Z0. Notice that the cheapest birth out of z‡ comes at a cost of βm+1,
since z‡

i = 1 for all i ≤ m, and z‡ = 0 for all i > m. Similarly, the cheapest death out of z‡ comes at a cost of δι. Hence

mini∈N [z‡
i δi + (1− z‡

i )βi ] in (10) can be replaced by min[δι,βm+1], yielding E(z‡) ≥ A −min[δι,βm+1]+∑m−1
i=1 βi .

It is now shown that transitions from remaining states may be constructed at no additional exponential cost, so that
a tree rooted at z‡ is obtained that attains the lower bound in (10). To do this, take a state z ∈ Zm where z �= z‡ such that
mini∈N

[
zi δi + (1− zi )βi

] = δ j for some z j = 1. Hence the least-cost exit from z is to move to z′ = z j− ∈ Zm−1. One
possibility is that z′ is encountered on the upward path from Z0 to z‡. In this case, there is a path from z into z‡. A second
possibility is that a zero-cost step up might be taken directly into z‡. If neither opportunity is available, take a zero-cost
step down into z′′ ∈ Zm−2. Now, z′′ may be on the upward path from Z0 to z‡. If not, then another zero exponential-cost
step may be taken down into Zm−3. This sequence continues until the graph hits either the upward path or Z0. In either
case, following the initial death of j from z ∈ Zm , there is a path with zero additional exponential cost leading into z‡.

Next, take a state z ∈ Zm where z �= z‡ such that mini∈N [zi δi + (1− zi )βi ] = β j �= δk , for some z j = 0, and for all
zk = 1. Hence the least-cost exit from z is to move up to z′ = z j+ ∈ Z . From z′, construct a zero exponential-cost transition
back down into Zm . To do this, pick k = argmaxi∈N [βi zi ] and remove player k. Now z �= z‡, so βk > β j .26 Do this for
all states z ∈ Zm where the least-cost exit is upward. Define B(z) = ∑

i∈N βi zi . Notice that, as the process moves up
from state z ∈ Zm , and back down again, B(z) is decreasing. Following this path, eventually state z‡ = argminz∈Zm B(z)
must be reached. Consequently there are no cycles, and there is a path from every state in Zm to z‡. Finally, consider any
states above layer Zm that are unconnected. At zero cost, remove a contributor to transit to the layer below. Similarly, for
states below Zm that are unconnected, do the same. This is a rooted tree with an exponential cost that attains the lower
bound. ‖

Lemma 6. For all z ∈ Zm, the exponential cost of a tree rooted at z is bounded:

E(z) ≥ A − min
i∈N

[
zi δi + (1− zi )βi

]+
m−1∑
i=1

βi .

Proof. Follow the argument leading to (10) in the proof of Lemma 5. ‖

Lemma 7. Define z0 = z ∈ Z0. If δι ≤ βm+1 then E(z0) = A. Alternatively, if δι > βm+1 then

E(z0) = A −βm+1 +min[δ‡,δι] where δ‡ ≡ min
j>m

[
β j + δ j −min[βm ,δ j ]

]
.

Proof. Consider a tree rooted at z0. There must be a transition out of every state in Zm , and hence such a tree has
an exponential cost of at least A. For states z ∈ Zm where z �= z‡ follow the procedure described in the proof of Lemma 5
to construct a sequence of zero-cost transitions that connect each such state to z‡. For any unconnected states above or
below Zm remove a player at zero cost from the active team to yield a transition to the layer below. Finally, consider state
z‡. If δι ≤ βm+1 then a least exponential-cost exit is to move down to layer Zm−1. This yields a tree rooted at z0 with
exponential cost A. The remainder of the proof is for the case δι > βm+1.

Step (i). Construct a benchmark graph in the following manner. For each state in Zm , take the least-cost exit. For all
other states except z0, take any zero-cost exit—there will always be at least one such transition available. The graph so
connected has an exponential cost of A, by construction.

26. This is where the genericity assumption (see footnote 12) that βi �= β j for all i and j comes in. If there were
ties then the tied players could be re-ordered by shoe size and the proof would continue.
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Step (ii). Consider a least exponential-cost tree rooted at z0. (This will be compared to the benchmark graph from
step (i).) Without loss of generality, build transitions from all states in Zm−1 that point downwards, at zero exponential
cost, into Zm−2.

Step (iii). With the tree described in step (ii) in mind, begin with state z‡. Follow the sequence of directed edges in
the tree until the first node in Zm−1 is reached. The final edge in this sequence, which terminates at a state in Zm−1,
must originate from some state in Zm . Call this originating state z�. From state z�, some player j satisfying z�

j = 1 must

die at a cost of δ j to move into layer Zm−1. (In preparation for step (v) below, note that it might well be that z� = z‡.)
Step (iv). Take the set of states z ∈ Zm that are not encountered on the path from z‡ to z�. Take the least-cost exit from

each of these. Add zero-cost links from other states not in Zm to construct transitions that lead into the aforementioned
path. (This follows the procedure described in the proof of Lemma 5, and can be completed at zero exponential cost.)
Any difference in the exponential cost of the tree, relative to the benchmark graph, must arise on the path from z‡ to z�.

Step (v). Suppose that z‡ = z�. If this is the least exponential-cost rooted tree, then the dying player j must be j = ι,
since this player faces the lowest death cost δι among the team members at z‡. Relative to the benchmark, there is no exit
upward. The exponential cost of this tree is

E(z0) = A + δι −βm+1. (11)

Step (vi). Suppose instead that z‡ �= z�. Write Ñ = {i : z�
i = 1 and z‡

i = 0} for the contributors acquired along
the path from z‡ to z�. If i ∈ Ñ then player i must have been acquired at a cost of βi ≥ βm+1. If this player were
acquired following an exit from z′ ∈ Zm , then relative to the baseline graph the net exponential cost increase must be
at least βi − βm+1. In particular, the acquisition of the player of interest (the player j who dies to enable the final
escape from state z�) came at a positive net exponential cost. For i �= j , these net costs could be saved by eliminating
such acquisitions along the path. Hence, if the tree in question is a minimum-cost rooted tree, then either Ñ = {j} or
there is an equally costly tree with Ñ = {j}. Hence the path from z‡ consists of two steps: the acquisition of player
j ≥ m + 1, followed by the loss of some other player i ≤ m from the original team. In fact, player i = m should be
removed to ensure that the tree has minimum exponential cost, as m is the player who ensures that the cheapest possible
exit-birth cost (to be removed from z�) is as high as possible. Relative to the baseline graph (with exponential cost A)
there are additions of β j and δ j and deductions of βm+1 and min[δ j ,βm ]. (This last point is because, from the viewpoint
of state z�, player m is the player outside the team with the least exit-birth cost.) Hence, the exponential cost of this
rooted tree is E(z0) = A +β j + δ j −βm+1 −min[βm ,δ j ]. Such a tree can be constructed by choosing any j > m to be
added to the original team z‡. Hence, if the tree in question is a minimum exponential-cost tree, j > m must minimize
β j + δ j −min[βm ,δ j ].

Step (vii). Add back in the term A − βm+1, to give E(z0) = A − βm+1 + min j>m [β j + δ j − min[βm ,δ j ]]. Now
z� �= z‡ if and only if this term is smaller than the one given in (11) since only the least exponential-cost tree rooted at z0

is of interest. Hence that cost is

E(z0) = A −βm+1 +min

[
min
j>m

[
β j + δ j −min[βm ,δ j ]

]
,δι

]
,

which (given the definition of δ‡) is the required expression in the statement of the lemma. ‖

Lemma 8. If δι < min[δµ,βι] and ι = m, then for all z j ∈ Z�,

E(z j ) = A −min[δ j ,δκ ,βm ]+
m−1∑
i=1

βi .

Proof. By Lemma 6, E(z j ) is at least A −mini∈N [z j
i δi + (1− z j

i )βi ]+∑m−1
i=1 βi . The team z j contains j , there-

fore an element of the second term is δ j . It does not contain m, but does contain each i < m. Therefore the lowest birth

cost such that z j
i = 0 is βm . Finally, the lowest death cost may be δ j or it may be the lowest death cost of the first m −1

players, δκ . Thus

E(z j ) ≥ A −min[δ j ,δκ ,βm ]+
m−1∑
i=1

βi .

To prove the lemma it need only be shown that there is a rooted tree that attains this bound. Consider the least
exponential-cost rooted tree at z‡ constructed in Lemma 5. There must have been a path out of z j , and given the con-
struction in Lemma 5, this came at cost min[δ j ,δκ ,βm ]. Remove this branch, reducing the weight of the tree by the
associated cost. A new branch is required out of z‡ leading to z j . The cheapest such branch has cost min[βm+1,δι]. But
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δι < min[maxi>m δi ,βι] and ι = m. Hence δι < βι = βm < βm+1. The cheapest exit from z‡ is to kill player m (at the
cost of δι). Adding player j at zero cost from the resultant state in Zm−1 leads directly to z j . ‖

Proof of Theorem A1 for δι ≥ min[δµ,βι]. A first claim is that min{E(z0),E(z‡)} ≤ E(z) for all z ∈ Z . Clearly
E(z0) ≤ E(z) when |z| < m. Similarly, E(zm ) ≤ E(z) for all |z| > m and some zm ∈ Zm . It remains to show that E(z‡) ≤
E(z) for z ∈ Zm . Using Lemmas 5 and 6, it is sufficient to show

A −min[δι,βm+1]+
m−1∑
i=1

βi ≤ A − min
i∈N

[
zi δi + (1− zi )βi

]+
m−1∑
i=1

βi , (12)

since the L.H.S. is E(z‡) and the R.H.S. is a lower bound on E(z) for z ∈ Zm . Implying (12) it will be shown that
mini∈N [zi δi + (1− zi )βi ] ≤ min[δι,βm+1]. Three subcases are considered.

(i) Suppose that βm+1 ≤ δι. In state z �= z‡ there is some j ≤ m such that z j = 0. This means that mini∈N [zi δi +
(1− zi )βi ] ≤ β j < βm+1 = min[δι,βm+1], and so (12) holds.

(ii) If βm+1 > δι ≥ δµ, then mini∈N [zi δi +(1−zi )βi ] ≤ mini∈N [δι, (1−zi )βi ] < min[δι,βm+1]. The first inequality
follows from the fact that z j = 1 for some j > m (since z �= z‡), and j satisfies δ j ≤ δµ ≤ δι. The second (strict)
inequality follows from the fact that z j = 0 for some j ≤ m (since z �= z‡), and this player must have β j < βm+1.
Hence (12) holds once more.

(iii) The remaining case is when βm+1 > δι and δµ > δι. Since δι ≥ min[δµ,βι], it must be the case that δι ≥ βι. If
zι = 0 then mini∈N [zi δi + (1− zi )βi ] ≤ βι ≤ δι = min[δι,βm+1], so that (12) holds. If, on the other hand, zι = 1,
then mini∈N [zi δi + (1− zi )βi ] ≤ δι, and again (12) holds.

Therefore E(z‡) ≤ E(z) for all z ∈ Zm . The second step (using Lemmas 5 and 7) is to show that

E(z‡) < E(z0) ⇐⇒
m−1∑
i=1

βi < min[δ‡,δι] where δ‡ = min
j>m

[
β j + δ j −min[βm ,δ j ]

]
. (13)

(i) First suppose that δι ≤ βm+1. By Lemma 7, E(z0) = A. By Lemma 5, E(z‡) = A−min[δι,βm+1]+∑m−1
i=1 βi =

A − δι + ∑m−1
i=1 βi . Hence E(z‡) < E(z0) if and only if

∑m−1
i=1 βi < δι. Now notice that δ‡ ≥ min j>m [β j ] =

βm+1. Since δι ≤ βm+1, (13) is verified.
(ii) Now consider the alternative δι > βm+1. From Lemma 5, E(z‡) = A −βm+1 +∑m−1

i=1 βi , and direct application
of Lemma 7 verifies (13). This proves the first statement in Theorem A1.

Proof of Theorem A1 for δι < min[δµ,βι]. First note again that any state not in either Zm or in Z0 is trivially not a
candidate for selection. For this case, δι < βι < βm+1. Thus, using Lemma 7, E(z0) = A. Using Lemma 6, a sufficient
condition for z0 to be selected is

max
z∈Zm

[
min
i∈N

[
zi δi + (1− zi )βi

]]
<

m−1∑
i=1

βi .

A team in Zm either contains ι or not. Partition Zm into two such sets. Then

zι = 1 ⇒ min
i∈N

[
zi δi + (1− zi )βi

] ≤ δι, and zι = 0 ⇒ min
i∈N

[
zi δi + (1− zi )βi

] ≤ βι.

Recall that this is the case where max[δι,βι] = βι. Therefore

max
z∈Zm

[
min
i∈N

[
zi δi + (1− zi )βi

]] ≤ max[δι,βι] = βι.

So z0 is selected if βι <
∑m−1

i=1 βi . If ι �= m and m ≥ 3 this holds. If ι �= m and m = 2, then E(z0) ≤ E(z) for all z
and teamwork cannot succeed. So, ι = m is necessary for successful teamwork.

The remaining case is when δι < min[δµ,βι] and ι = m. Successful teamwork requires E(z) < E(z0) for some team
z ∈ Zm . If zi = 0 for some i < m, then, using Lemma 6,

E(z) ≥ A − min
i∈N

[
zi δi + (1− zi )βi

]+
m−1∑
i=1

βi ≥ A −βm−1 +
m−1∑
i=1

βi ≥ A = E(z0),

where the second inequality follows from mini∈N [zi δi + (1− zi )βi ] ≤ βm−1, since zi = 0 for some i < m. (Notice that
the final inequality is strict whenever m ≥ 3, and so E(z) > E(z0).)
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Hence successful teams must satisfy zi = 1 for all i < m. Such teams are z‡ and the members of Z�. For z j ∈ Z�,
Lemma 8 applies. Now, z‡ is a candidate for selection only if E(z‡) ≤ E(z j ) for all z j ∈ Z�. Using Lemmas 5 and 8, this
occurs only if δm ≥ min[δ j ,δκ ,βm ] for all j > m. However, δm < δκ by definition. δm < βm , and there is some j such
that δ j > δm , since δι < min[maxi>m [δi ],βι] and ι = m by construction. Therefore z‡ is not selected.

This leaves only z0 and teams z j ∈ Z� as candidates for selection. Comparing exponential costs for such states, if∑m−1
i=1 βi > min[δ j ,δκ ,βm ] for all j > m then z0 is selected; only when

∑m−1
i=1 βi < min

[
δµ,δκ ,βm

]
does teamwork

succeed. Which teams succeed? Two cases arise: either δµ < min[δκ ,βm ] or the reverse. If the former is true, then all
j > m have lower death costs than the minimum of δκ and βm . The most stable team is the one to which the player with
the highest of these belongs. That is, by repeated application of Lemma 8, δµ < [δκ ,βm ] implies E(zµ) < E(z) for all
z ∈ Z� where z �= zµ. On the other hand, if δµ > min[δκ ,βm ], then there are (potentially) many teams in Z� with the
same least exponential cost. Indeed, repeated application of Lemma 8 reveals that all teams which contain player j > m
such that δ j > min[δκ ,βm ], and the first m − 1 players have the same cost: these are precisely the teams contained in
Zµ. ‖

A careful reading of the proof of Theorem A1 reveals that for generic (Footnote 12) birth and death costs and m ≥ 3,
E(z0) < E(z) for all z �= z0 whenever teamwork fails, and hence

∑
z∈Z0

pz → 1 as ε → 0. This is also true when m = 2

and δι ≥ min[δµ,βι]. The remaining loose end is when m = 2 and δι < min[δµ,βι]. For this case, E(z0) = A. Suppose
that ι = 1 �= m, and consider a team in Zm with members i and j . If min[δi ,δ j ] ≤ β1, then further tree surgery confirms
that E(z) = A. For m = 2, then, there is a generic parameter configuration for which states in Z0 and Zm retain positive
probability as ε → 0. This special case involves only the partial failure of collective action.

APPENDIX B. CONCORDANCE AND TEAM SUCCESS

This appendix relates the ordering of death costs and equilibrium selection. Call δ̂ = (δ̂i )
n
i=1 a discordant permuta-

tion of δ = (δi )
m
i=1 whenever C is more concordant than Ĉ and for each i , δ̂i = δ j for some j (and vice versa). Write

κ̂ ≡ argmini<m [δ̂i ], ι̂ ≡ argmini≤m [δ̂i ], and µ̂ ≡ argmaxi>m [δ̂i ].

Lemma 9. If δ̂ is a discordant permutation of δ then δ̂ι̂ ≥ δι, δ̂κ̂ ≥ δκ , and δ̂µ̂ ≤ δµ.

Proof. Let r(i) be the rank of δi and r̂(i) be the rank of δ̂i , so that δ̂ι̂ = δ̂(r̂(ι̂)). If δ̂ι̂ < δι, then

C(m, r̂(ι̂)) =
m∑

i=1

I[δi ≤ δ̂ι̂] = 0 and Ĉ(m, r̂(ι̂)) =
m∑

i=1

I[δ̂i ≤ δ̂ι̂] = 1,

but C is more concordant than Ĉ , yielding a contradiction. An analogous argument proves the lemma’s second inequality.
Finally suppose, again to the contrary, that δ̂µ̂ > δµ. This means that δ̂µ̂ = δi for some i ≤ m. Suppose C(m,r(µ)) = k

(with k ∈ {0,m −1}, since δ̂µ̂ = δi > δµ for some i ≤ m). Given a death cost configuration δ, there are k death costs within
the first m players lower than δµ. Every player j > m has a death cost lower than δµ. Therefore, given that (at least) one
of the death costs above δµ no longer belongs to j ≤ m under the configuration δ̂, Ĉ(m,r(µ)) = ∑m

i=1I[δ̂i ≤ δµ] > k,
contradicting the fact that C is more concordant than Ĉ . ‖

In a natural notation, let the exponential cost of the least-cost tree rooted at state z under a new configuration of
death costs δ̂ be Ê(z). Proposition 4 is a consequence of the following theorem.

Theorem B1. If δ̂ is a discordant permutation of δ, then E(z) < E(z0) ⇒ Ê(z′) < Ê(z0) for z, z′ ∈ Z.

Proof of Theorem B1. Clearly, either z = z‡ or z ∈ Zµ. Suppose z = z‡ and δι ≤ βm+1. Then E(z0) = A and
E(z‡) = A + ∑m−1

i=1 βi − δι from Lemmas 7 and 5. Now E(z‡) < E(z0) ⇒ ∑m−1
i=1 βi < δι. By Lemma 9, δ̂ι̂ ≥ δι >∑m−1

i=1 βi . If δ̂ι̂ ≤ βm+1 then Ê(z‡)− Ê(z0) = ∑m−1
i=1 βi − δ̂ι̂ < 0 and the result follows. If δ̂ι̂ > βm+1 then (again from

Lemmas 7 and 5),

Ê(z‡)− Ê(z0) =
m−1∑
i=1

βi −min[δ̂‡, δ̂ι̂] ≤
m−1∑
i=1

βi −βm+1 ≤
m−1∑
i=1

βi − δι < 0,

where δ̂‡ ≡ min
j>m

[
β j + δ̂ j −min[βm , δ̂ j ]

]
≥ βm+1.
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Once again, the result follows. Now suppose that z = z‡ and that δι > βm+1. Thus, by Lemma 9, δ̂ι̂ > βm+1. Now,
from Lemma 5, E(z‡) = A +∑m−1

i=1 βi −βm+1 and from Lemma 7,

E(z0) = A −βm+1 +min[δ‡,δι], where δ‡ ≡ min
j>m

[
β j + δ j −min[βm ,δ j ]

]
. (14)

Therefore,
∑m−1

i=1 βi < min[δ‡,δι]. Now Ê(z‡) − Ê(z0) = ∑m−1
i=1 βi − min[δ̂‡, δ̂ι̂], and so it is sufficient to show

that min[δ‡,δι] ≤ min[δ̂‡, δ̂ι̂]. If δ̂ι̂ ≤ δ̂‡ then min[δ̂‡, δ̂ι̂] ≥ δ̂ι̂ ≥ δι ≥ min[δ‡,δι], where the second inequality is from
Lemma 9, and so min[δ̂‡, δ̂ι̂] ≥ min[δ‡,δι] as required. If δ̂ι̂ > δ̂‡, then define k = argmin j>m [β j + δ̂ j − min[βm , δ̂ j ]].
If δk ≤ δ̂k then βk + δk −min(βm ,δk ) ≤ βk + δ̂k −min[βm , δ̂k ], since this term is weakly increasing in δk . So

min[δ‡,δι] ≤ δι ≡ min
j>m

[
β j + δ j −min(βm ,δ j )

] ≤ βk + δ̂k −min[βm , δ̂k ] = min[δ̂‡, δ̂ι̂], (15)

as required. Suppose δk > δ̂k . Now Ĉ(k, r̂(k)) = ∑k
i=1I[δ̂i ≤ δ̂k ] = 1. To see this note that were there a j > m such that

δ̂ j ≤ δ̂k then k could not have been the minimizer in the first place. If there were a j ≤ m such that δ̂ j ≤ δ̂k then certainly
δ̂ι̂ ≤ δ̂k , and thus δ̂ι̂ would be smaller than βk + δ̂k −min[βm , δ̂k ], contrary to assumption. Thus, for δ̂ to be a discordant
permutation of δ, C(k, r̂(k)) = ∑k

i=1I[δi ≤ δ̂k ] ≥ 1. So there exists i ≤ k such that δi ≤ δ̂k , i �= k, since δk > δ̂k by
assumption. Thus there exists i < k where δi ≤ δ̂k . For such an i > m: βi +δi −min[βm ,δi ] ≤ βk + δ̂k −min[βm , δ̂k ]; (15)
holds with the second inequality strict. For such an i ≤ m: δι ≤ δi ≤ δ̂k < βk + δ̂k −min[βm , δ̂k ], and hence min[δ‡,δι] <

βk + δ̂k −min[βm , δ̂k ] as required.
Suppose now that z �= z‡ but z ∈ Zµ. Then, by Theorem A1, δι<min[δµ,βι], ι = m, and

∑m−1
i=1 βi < min[δκ ,δµ,βm ].

First, suppose that ι̂ �= m. Consider z′ = z‡. If δ̂ι̂ ≤ βm+1 then Ê(z‡)− Ê(z0) = ∑m−1
i=1 βi − δ̂ι̂ by Lemmas 5 and 7. Since

ι̂ < m: δ̂ι̂ = δ̂κ̂ ≥ δκ ≥ min[δκ ,δµ,βm ] >
∑m−1

i=1 βi (the first inequality follows from Lemma 9) and so Ê(z′) = Ê(z‡) <

Ê(z0) as required. If δ̂ι̂ > βm+1, then Ê(z‡)− Ê(z0) = ∑m−1
i=1 βi −min[δ̂‡, δ̂ι̂] again by Lemmas 5 and 7. The minimum

in this expression is at least βm+1, and βm+1 > βm ≥ min[δκ ,δµ,βm ] >
∑m−1

i=1 βi . Once again Ê(z′) = Ê(z‡) < Ê(z0)

as required.27 The remaining case is when ι̂ = m.
First, suppose that δ̂ι̂ < min[βι̂, δ̂µ̂]. Consider z′ ∈ Zµ. Ê(z′) < Ê(z0) if

∑m−1
i=1 βi < min[δ̂κ̂ , δ̂µ̂,βm ] (by Theo-

rem A1). Suppose this inequality breaks. Noting that δ̂κ̂ ≥ δκ , this can only happen if δ̂ι̂ < δ̂µ̂ ≤ ∑m−1
i=1 βi < min[βm , δ̂κ̂ ].

So δ̂µ̂ < δµ. Thus δµ = δ̂i for some i ≤ m. Then there must exist some j > m such that δ̂ j = δk for k ≤ m. If k < m, then

δ̂µ̂ ≥ δk ≥ δκ >
∑m−1

i=1 βi : a contradiction. If k = m, then suppose that i = m so that δ̂ι̂ = δµ > δ̂µ̂, a contradiction. Alter-

natively, suppose that δ̂i = δµ, some i < m. Then δi ≥ δκ . If δ̂ j = δi with j > m, then once again δ̂µ̂ ≥ δi ≥ δκ >
∑m−1

i=1 βi .

If δ̂ j = δi with j = m, then δ̂ι̂ = δi ≥ δκ , but δ̂µ̂ > δ̂ι̂ ≥ δκ >
∑m−1

i=1 βi : a final contradiction.

Second, suppose that δ̂ι̂ ≥ min[βι̂, δ̂µ̂]. Consider z′ = z‡. If δ̂ι̂ > βm+1 then by Lemmas 5 and 7, Ê(z‡)− Ê(z0) =∑m−1
i=1 βi − min[δ̂‡, δ̂ι̂]. The smallest this latter minimum could be is βm+1. But βm+1 > βm >

∑m−1
i=1 βi , so Ê(z′) =

Ê(z‡) < Ê(z0), and z‡ is selected. If δ̂ι̂ ≤ βm+1 then, again by Lemmas 5 and 7, Ê(z‡)− Ê(z0) = ∑m−1
i=1 βi − δ̂ι̂. Now

if δ̂ι̂ ≥ βm then δ̂ι̂ >
∑m−1

i=1 βi and z‡ is selected. If δ̂ι̂ < βm then δ̂ι̂ ≥ δ̂µ̂. Now δ̂µ̂ ≤ δµ by Lemma 9. If δ̂µ̂ = δµ, then

δ̂ι̂ ≥ δµ >
∑m−1

i=1 βi and z‡ is selected. If δ̂µ̂ < δµ then there is an i ≤ m such that δ̂i = δµ. Therefore, there is a k > m

and a j ≤ m such that δ̂k = δ j . If j < m then δ j ≥ δκ and so δ̂µ̂ ≥ δ̂k = δ j ≥ δκ >
∑m−1

i=1 βi . Now δ̂ι̂ ≥ δ̂µ̂ and z‡ is

selected. If j = m, then either i = m or i < m. If the former, δ̂ι̂ = δµ >
∑m−1

i=1 βi and z‡ is selected. If the latter, then

δ̂ι̂ = δl for some l < m and so δ̂ι̂ ≥ δκ >
∑m−1

i=1 βi , and hence once again z‡ is selected. ‖

APPENDIX C. OMITTED PROOFS

Proof of Proposition 1. For this birth-death process, the ergodic odds of Zm and Z0 satisfy

ε log

∑
z∈Zm

pz∑
z∈Z0

pz
= ε log

(
n

m

)
− (m −1)ε log

[
1−b

b

]
+ ε log

[
1−d

d

]
→ δ − (m −1)β as ε → 0.

Hence if δ > (m −1)β then [
∑

z∈Zm
pz ]/[

∑
z∈Z0

pz ] → ∞ as ε → 0. Further calculations reveal that states outside

Z0 and Zm are never selected, and that z0 is selected when δ < (m −1)β. ‖

27. Since ι = m is a requirement for z ∈ Zµ to be selected, it must therefore follow that z‡ is selected if ι̂ �= m.
This in turn means that the precondition δ̂ι̂ ≥ min[βι̂, δ̂µ̂] is met (see Theorem A1). Of course, this is so, since δκ >∑m−1

i=1 βi ⇒ δκ > βκ = βι̂ ≥ min[βι̂, δ̂µ̂] and δ̂ι̂ = δ̂κ̂ ≥ δκ .
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Proof of Proposition 2. When δ1 > · · · > δn , ι = m and µ = m + 1. The first part of Theorem A1 applies, since
δm ≥ min[δm+1,βm ] automatically. Thus

∑m−1
i=1 βi < min[δ‡,δm ] implies E(z‡) < E(z) for all z �= z‡ and otherwise

E(z0) < E(z) for all z �= z0, as required. ‖

Proof of Proposition 3. When δ1 < · · · < δn , ι = 1 and µ = n. Now δ1 < min[δn ,β1] if and only if δ1 < β1. But
β1 > δ1 certainly implies

∑m−1
i=1 βi > δ1. Now, because ι �= m, E(z0) < E(z) for all z �= z0 from Theorem A1. Consider

the alternative case δ1 ≥ min[δn ,β1] (so that min[δn ,β1] = β1 must hold), and note that min[δ‡,δι] = δ1. To see this
latter fact, note that δ‡ ≡ min j>m [β j + δ j −min[δ j ,βm ]] ≥ δm+1 > δ1. Thus, applying Theorem A1 again gives

m−1∑
i=1

βi < δ1 ⇒ E(z‡) < E(z) (16)

for all z �= z‡. Otherwise E(z0) < E(z) for all z �= z0. If the inequality in (16) holds then clearly δ1 > β1. So the inequality
is sufficient for selection of z‡; its reverse sufficient for selection of z0. ‖

Proof of Proposition 4. From the application of Theorems A1 and B1. ‖

Proof of Propositions 5–8. From arguments given in the main text. ‖

Proof of Proposition 9. w(z) = nG(|z|)−∑n
i=1 zi ci and ψ(z) = G(|z|)−∑n

i=1 zi ci . So,

∂w

∂ci
= ∂ψ

∂ci
=

{−1 if zi = 1, and

0 if zi = 0,

for any i . Suppressing arguments, W satisfies W
∑

z∈Z exp[ψ/ε] = ∑
z∈Z w exp[ψ/ε]. Write Zi+ = {z : zi = 1} for the

states in which i contributes. Differentiating and collecting terms yields

dW

dci

∑
z∈Z

exp[ψ/ε] =
∑

z∈Zi+
exp[ψ/ε]

[
W

ε
− w

ε
−1

]
. (17)

Differentiating a second time with respect to ci , and cancelling common terms gives

d2W

dc2
i

∑
z∈Z

exp[ψ/ε] = − 1

ε

∑
z∈Zi+

exp[ψ/ε]

[
W

ε
− w

ε
−1

]
︸ ︷︷ ︸

Zero when dW/dci = 0

+ 1

ε

∑
z∈Zi+

exp[ψ/ε].︸ ︷︷ ︸
Strictly positive

At a stationary point the second derivative is strictly positive and so W is strictly quasi-convex in ci . The R.H.S.
of (17) is strictly positive for ci sufficiently large and strictly negative for ci sufficiently small (and possibly
negative). ‖

Proof of Proposition 10. Welfare can be written in terms of four components:

W =
∑

z∈Z w exp[ψ/ε]∑
z∈Z exp[ψ/ε]

=
∑

z∈Zi+ w exp[ψ/ε]+∑
z /∈Zi+ w exp[ψ/ε]∑

z∈Zi+ exp[ψ/ε]+∑
z /∈Zi+ exp[ψ/ε]

≡ A+
i + A−

i

B+
i + B−

i

.

Excluding i yields welfare W−
i = A−

i /B−
i . Thus i should be excluded if and only if W < W−

i . This occurs whenever
A+

i /B+
i < A−

i /B−
i , or equivalently W+

i < W−
i , where W+

i is welfare when player i is coerced. For the first claim, note
that ∂W−

i /∂ci = 0, and consider W+
i . Since zi = 1 for all z ∈ Zi+, an increase in ci can only lower welfare. Thus W+

i
crosses W−

i at most once, and there exists a c∗
i ∈ [0,∞) such that if ci ≥ c∗

i welfare is larger with player i excluded.
Turning to the second claim, suppose that the optimal contributor pool contains j but not i < j . Welfare must

decrease with c j , since otherwise (owing to the quasi-convexity of W in c j ) it would be optimal to exclude j . Hence
welfare is increased by lowering c j down to ci . But this can be achieved by removing j from the pool and including i .
Hence the contributor pool was suboptimal; a contradiction. This means that the optimal contributor pool may be empty,
or it may be {1, · · · ,n∗} for some n∗. For a threshold game, if n∗ < m, then the collective action cannot succeed, and
so contributions generate costs without any benefit. Hence, if the contributor pool is non-empty, then n∗ ≥ m. The final
claim follows from the argument given in the text. ‖
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