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Abstract. We study a Bertrand oligopoly with asymmetric costs in which each seller has

some “captive” buyers. In the limit as captive buyers vanish, the lowest-cost firm sells to

everyone at a price equal to the second-lowest marginal cost. However, the closest compet-

ing price arises from non-degenerate mixed strategies, firms play exclusively undominated

strategies, and with positive probability all but one firm sets the monopoly price.

A received result in textbook Bertrand theory is that identical competitors ferociously undercut
each other until their prices reach marginal cost. Of course, marginal-cost pricing is weakly domi-
nated. In a symmetric oligopoly, Harrington (1989) showed how all equilibria have this feature.1

For strictly asymmetric marginal costs, standard classroom intuition is that the two most efficient
firms compete down to the second-lowest cost. This price is dominated for that second-lowest-cost
firm and so the issue persists. In a duopoly, Blume (2003) exhibited equilibria in undominated
strategies in which the most efficient firm sets its price equal to its competitor’s (higher) marginal
cost, while that competitor mixes over an interval extending upward. The efficient firm serves
everyone at a price equal to the inefficient firm’s marginal cost. Kartik (2011) showed that for any
Nash equilibrium with undominated strategies, this outcome is preserved. Nevertheless, there are
many other equilibria, including those in which the efficient firm prices strictly below its nearest
competitor’s marginal cost, while a competitor mixes down to that price to dissuade any price rise.

For an asymmetric-cost duopoly, De Nijs (2012) elegantly resolved the multiplicity problem by
adding “captive” customers for each firm (Varian, 1980; Narasimhan, 1988), and so studied the
fully asymmetric captive-and-shopper duopoly of Golding and Slutsky (2000).2 In the limit as
the masses of captive customers vanish, the efficient firm serves everyone at a price equal to the
inefficient marginal cost, while its competitor mixes all of the way up to (and places an atom at) the
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1He also showed this is approximately so when one replaces the usual continuous strategy space with a discrete one.
2Baye, Kovenock, and de Vries (1992) described the complete (large) set of equilibria of symmetric captive-shopper
games, as well as the unique equilibrium when there are asymmetries in captive audiences. Golding and Slutsky
(2000) allowed for asymmetric costs and captives in a duopoly, while recently Shelegia and Wilson (2021) allowed for
asymmetric duopolies (and symmetric oligopolies) in which firms pay to advertise prices. Extending to richer price
consideration, but with symmetric-cost firms, Armstrong and Vickers (2022) characterized equilibria in a triopoly,
under symmetry, and for some natural special cases. In our own other work, we derived and studied “stable prices” for
a variety of consideration specifications in place of single-stage Nash equilibria (Myatt and Ronayne, 2025b).
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monopoly price. The outcome corresponds to the classroom description, but the observed prices
do not: only the efficient firm prices at (the second lowest) marginal cost, while its competitor
prices strictly higher and sets the monopoly price with strictly positive probability.

In recent work (Myatt and Ronayne, 2025a) we solved an oligopoly (n > 2) captive-shopper
model allowing for asymmetries in both costs and captive audiences. Here we use our results to
extend the findings of De Nijs (2012) to an oligopoly setting. In the zero-captives limit we find:
(i) the most efficient firm serves all buyers at a price equal to the second-lowest marginal cost;
(ii) inefficient firms exclusively use undominated prices, and set the monopoly price with strictly
positive probability; and (iii) the distribution of the minimum price amongst inefficient firms has
full support from the second-lowest marginal cost up to the monopoly price and coincides with the
mixed strategy of the high-cost firm described by De Nijs (2012) in which the CDF at each price
is equal to the ratio of profit margin enjoyed by the second-lowest-cost firm to that of the lowest-
cost firm. The order in which the masses of captive buyers are taken to zero can matter (unlike
in the duopoly case) so that mixing can involve all inefficient firms with supports that partition
the full interval of prices so that they all “dance pairwise” with the efficient firm. Importantly,
however, a key message from this strand of literature—that only one firm prices at (the second
lowest) marginal cost, while other prices are higher—is maintained in an oligopoly.

Model. Each risk-neutral firm i ∈ {1, . . . , n} operates with a constant marginal cost ci ∈ [0, v)

and simultaneously sets a price pi ∈ [0, v] where v > 0 is customers’ common maximal willingness
to pay. Costs are strictly asymmetric, and we order firms so that c1 < c2 < . . . < cn.

A mass of λS > 0 of “shoppers” buy from the cheapest firm with ties broken arbitrarily. A mass of
λi > 0 of “captives” buy exclusively from firm i. Our focus is industries that approximate a classic
Bertrand environment so that the masses of captives are (vanishingly) small. Our exposition is
smoothed (we explain just below) by placing an upper bound on captive masses from the outset:
we set λi < (λS/v)(ci+1 − ci) for all i.

A firm’s payoff is its profit, and we seek its Nash equilibria.

Equilibrium. Firm i sells to captives even when pricing at v and so its lowest undominated price,
denoted p†i , is that which earns the captive-only monopoly profit when it also sells to shoppers:

λi(v − ci) = (λi + λS)(p
†
i − ci) ⇔ p†i =

λiv + λSci
λi + λS

. (1)

If captive masses are small then firms’ costs determine the ranking of these lowest undominated
prices: our assumption that λi < (λS/v)(ci+1 − ci) for all i implies that p†1 < p†2 < · · · < p†n.

We characterized the Nash equilibria of this game in an earlier paper (Myatt and Ronayne, 2025a).
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Proposition 1 (Equilibrium). A unique Nash equilibrium exists. It satisfies these properties.

(1) At least two firms play mixed strategies. Any firm that does not mix sets the monopoly price v.

(2) The lowest-cost firm 1 mixes continuously over the support S ≡ [p†2, v].

(3) The lowest price amongst inefficient firms is distributed with full support S. Its CDF satisfies

mini>1{pi} ∼ F (p) where F (p) =
(p− p†2)(λ1 + λS)

λS(p− c1)
for p ∈ [p†2, v). (2)

(4) If a firm i > 1 actively mixes, then it does so continuously over a single subinterval of S and
then places remaining mass as a strictly positive atom at the monopoly price v. Any two such
sub-intervals do not overlap, and all such sub-intervals form a partition of S.

(5) There is a p‡ ∈ (p†3, v] such that the two lowest-cost firms mix continuously over [p†2, p
‡) with

F1(p) =
(p− p†2)(λ2 + λS)

λS(p− c2)
and F2(p) = F (p). (3)

(6) At least three firms mix if and only if there is some i ∈ {3, . . . , n} and p ∈ [p†2, v) such that

(v − p)λi < (p− ci)λS(1− F1(p))(1− F (p)). (4)

(7) The expected profit of firm i is given by

πi = λi(v − ci)󰁿 󰁾󰁽 󰂀
captive-only profit

+

󰀻
󰀿

󰀽
(λ1 + λS)(p

†
2 − p†1) if i = 1, and

0 otherwise.
(5)

Proof. These claims follow from Propositions 1–3 of Myatt and Ronayne (2025a). □

The statements describe a sequence of pairwise “dances” on a “dance floor” interval [p†2, v]. The
lowest-cost (or efficient) firm 1 mixes (or dances) continuously over the whole interval. Its first
“dance partner” (commencing at p†2) is its closest (in terms of cost) competitor firm 2. This may,
if the inequality of eq. (4) fails for all [p†2, v] and all i > 2, be the only dance, such that only “two
tango.” Competition then reduces to a de facto duopoly (other firms simply charge the monopoly
price to their captives) and the solutions of Golding and Slutsky (2000) and De Nijs (2012) apply.

If the inequality reported in eq. (4) can be satisfied, then at some price p‡ ∈ (p†3, v) which solves
(v − p‡)λi = (p‡ − ci)λS(1 − F1(p

‡))(1 − F (p‡)), another firm i > 2 replaces firm 2 as firm 1’s
dance partner. As we move up through the interval of prices, firm 1 may have multiple partner
swaps. As this suggests, the equilibrium strategies are best specified in detail by an algorithm,
which is not necessary for the current analysis and so we omit a full technical description.3

3We refer the interested reader to the full details in (Myatt and Ronayne, 2025a, Online Appendix Sections S.1-S.3).
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Vanishing Captives. Mimicking the approach of De Nijs (2012), we now fix both the number of
firms and their marginal costs, and we consider a sequence of captive-shopper pricing games in
which their captive masses vanish to zero so that maxi∈{1,...,n}{λi} ↓ 0 and so p†i ↓ ci for all i.4

Along that sequence, Proposition 1 only describes fully the equilibrium when the condition in
eq. (4) fails so that only two firms dance. Nevertheless, the proposition characterizes firms’ profits,
the distribution of the minimum price amongst inefficient firms (because they must mix to keep
the lowest-cost firm indifferent across the whole support) and the distribution used by the efficient
firm when evaluated at lower prices (which coincides with established duopoly analyses).

Proposition 2 (Prices and Profits as Captivity Vanishes). Taking the limit as λi ↓ 0 for all i,

F1(p) → 1 and F (p) → p− c2
p− c1

for p ∈ (c2, v) and so Pr [p1 < mini>1{pi}] → 1. (6)

The efficient firm serves shoppers at a price equal to the second-lowest cost and earns λS(c2− c1).
The lowest price amongst its competitors is v with probability (c2−c1)/(v−c1). They earn nothing.

Proof. Any p ∈ (c2, v) satisfies p > p†2 if λ2 is sufficiently small, so that the solutions for F1(p) and
F (p) stated in Proposition 1 apply. Taking the limit as λ2 ↓ 0 (for F1(p) when p ∈ (c2, c3), which
then underpins the same limit for larger p) and also as λ1 ↓ 0 (for F (p), which depends on both λ1

and λ2, and where the solution applies for any p ∈ (c2, v)) generates the claimed results. □

The key claims of De Nijs (2012) are maintained, but the price distribution of the high-cost firm
in a duopoly is replaced by the distribution of the minimum price of inefficient firms. Also as in
De Nijs (2012), this does not depend on the order in which the captive masses vanishes.

However, that order does matter for the nature of the equilibrium. In the limit, the key inequality
of eq. (4) which determines whether firm i > 2 wishes to “step on to the dance floor” becomes

λi

λ2

<
(p− ci)(p− c2)

(p− c1)(c2 − c1)
. (7)

Whether this holds or not depends on the relative (rather than absolute) size of captive audiences.

Conclusion. Intuition suggests that Bertrand rivals undercut to marginal cost, yielding a single
market price. Our analysis reinforces that of De Nijs (2012): in the vanishing-captive limit, only
the most efficient firm sets the second-lowest cost, while others often set the monopoly price. Thus,
rather than a “law of one price,” equilibrium reflects a “law of monopoly pricing” where most firms
sit (far) above cost while exactly one anchors the (low) transaction price at which the market clears.

4There are some applied motivations to consider reductions in captivity. For example, increasingly efficient search
technology might allow navigation to the best deal via search engines, comparison websites, or switching services
(see, for example, Baye and Morgan, 2001; Ronayne, 2021; Garrod, Li, and Wilson, 2023).
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