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Preliminary and Incomplete

Abstract. We study markets in which buyers engage in fixed-sample search for a
homogeneous good sold by any number of firms. Firms set prices over two stages
in which initial pricing positions can be lowered but not raised prior to purchases.
Equilibrium features searchers gathering one or two price quotations and firms setting
a distinct profile of prices played as pure strategies on the equilibrium path. The
analysis and predictions differ markedly from those in the literature where a single-
stage of pricing produces mixed strategies in equilibrium. With homogeneous and
linear search costs, a stable equilibrium with search exists (for a given range of search
cost levels) if and only if the number of firms is greater than five. If however search
costs are sufficiently heterogeneous (and convex), then for any number of firms a stable
equilibrium with search exists, and if the CDF of costs is concave it is the unique one.

Keywords: consumer search, stable prices, undercut-proofness, price dispersion, price
competition, pure strategies, fixed-sample search, consideration sets.

1. Introduction

In many settings prices are not immediately accessible and buyers must engage in costly search
to reveal them. For example, where there is a lag between requesting and receiving a price
quotation, potential buyers’ main decision is how many suppliers to request quotations from.
This situation arises in many industries and contexts, including construction and large-project
tendering.2 Even in settings where prices are immediately visible, researchers have documented
consumer behavior that appears observationally equivalent to such fixed-sample search.3

Once a buyer has chosen how many prices to request (fixed their quotation sample size), they
choose among that many prices when they arrive. Requesting each quotation is costly, and so

1This paper replaces the earlier version titled “Two-Stage Pricing with Costly Buyer Search.” It includes and
develops some of the analysis within an earlier working paper (Myatt and Ronayne, 2019, Section 5).
2Morgan and Manning (1985) characterize conditions under which fixed-sample search is optimal.
3See, for example, De los Santos, Hortaçsu, and Wildenbeest (2012); Honka and Chintagunta (2016) who study
data from markets for books and auto insurance, respectively. Both studies fail to find a relationship between
the prices consumers see and their propensity to search on. This is consistent with a procedure of buyers
deciding in advance how many prices they will recover, and sticking to that no matter the prices they uncover
along the way. This “gather then evaluate” protocol is exactly what fixed-sample search models capture.
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the problem is non-trivial. Buyers solve this problem taking expected supplier prices into con-
sideration, and firms set their prices taking expected buyer search intensity into consideration.

This problem of fixed-sample or “simultaneous” search has been modeled by many, following
the seminal homogeneous-goods setting of Burdett and Judd (1983). Their work has seen
numerous extensions such as allowing for differentiated products, by Anderson, De Palma,
and Thisse (1992); Moraga-González, Sándor, and Wildenbeest (2021), and allowing for both
endogenous and exogenous search, by Janssen and Moraga-González (2004).4 Burdett and Judd
(1983) also inspired work in other areas where search is important, as evidenced by the labor
market studies of Acemoglu and Shimer (2000); Burdett and Mortensen (1998).

We examine the classic setting in which buyers engage in costly fixed-sample search for homo-
geneous goods. On the supply side, the common modeling approach in the literature is to have
firms play a single-stage pricing game. This leads to equilibrium pricing in mixed strategies.
In this paper we take a different approach and employ the two-stage framework we proposed
(Myatt and Ronayne, 2023b) in which firms each first select an initial pricing position, which
they can subsequently lower but not raise when setting their final price for buyers. In the classic
fixed-sample search setting, we derive a unique profile of such prices, one for each firm, which
are stable in the sense that no firm wishes to undercut any other firm’s price.

Our analysis and predictions differ markedly from those with the typical single stage of pric-
ing. Firstly, we show the prices we predict can arise from collective or non-cooperative firm
interaction. In fact, we show that a price profile is played on the equilibrium path (necessarily
in pure strategies) if and only if it is the (unique) profile of undercut-proof and Pareto efficient
(from the industry’s perspective) prices.

In terms of the prices themselves, in any equilibrium with search we predict firms choose a
distinct sequence of prices for which closed-form solutions are readily available.5 For given
buyer search behavior (but within the class that appears in any equilibrium with search), as
the number of firms, n ≥ 2, grows, firms’ prices distribute themselves between a fixed (invariant
to n) highest and lowest price. Similarly, the level of various prices at other rank-positions (e.g.,
the median when n is odd) is invariant to n. As the number of firms grows, the average price
charged falls (at least for small oligopolies). These points contrast to analysis of the same
setting with a single-stage of pricing, the symmetric mixed-strategy of which is invariant to n.

On the demand side, equilibrium search features some buyers getting one or two quotations, as
in Burdett and Judd (1983). Whether firms price use mixed or pure strategies does not affect
that; what matters is that buyers believe the distribution of prices they face is non-degenerate.6

4For a more general survey of firm pricing with consumer search, see Anderson and Renault (2018).
5In contrast, closed-form solutions (for the pricing distributions of firms’ equilibrium mixed-strategies) are
typically unavailable in the single-stage framework, as pointed out by many. See, for example, Janssen and
Moraga-González (2004, p.1103) or Johnen and Ronayne (2021, p.603).
6Burdett and Judd (1983) study a continuum of firms, which permits a pure-strategy interpretation, but solving
their model for any finite n would result in mixed-strategy pricing. We allow for any number of firms.
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We highlight that equilibria in this setting can be unstable in the sense that they would not
survive even small perturbations in buyer behavior. In fact, we show that under the standard
assumption that each search is equally costly then for the smallest oligopolies, specifically,
n ∈ {2, 3, 4}, the only equilibrium with search is unstable (leaving only an equilibrium in which
there is no search and hence no sales, so that the market breaks down). We refine this insight
by showing that there is an open set of search cost values for which a stable equilibrium with
search exists if and only if there are sufficiently many, n ≥ 5, firms. And, if it exists, it is the
only stable equilibrium with search. Any stable equilibrium with search has the comparative
static that buyers’ search intensity and surplus are higher for a lower search cost.

One reason there may not exist a stable equilibrium with search is that search costs are ho-
mogeneous. We relax this assumption and instead look for equilibria when search costs are
heterogeneous across buyers and convex with respect to the number of quotation any given
buyer gathers. For simplicity and to maintain comparability with earlier sections we assume
that the cost of the third search is prohibitive. This leaves buyers collecting one or two quota-
tions in any equilibrium with search, as in the case with homogeneous and linear search costs.
This allows us to focus purely on the shape of the distribution of costs for buyers’ second
search when characterizing the set of equilibria. We show that if there is sufficient richness in
the distribution of second-search costs (that there are both buyers with sufficiently low costs
and others with sufficiently high costs), then there is a stable equilibrium with search (for any
n). In addition, if that distribution is concave, then that is the unique equilibrium with search.

We consider the case when n grows arbitrarily large. There we show that the prices we predict
converge to exactly the same distribution as reported by Burdett and Judd (1983). This means
that, in the limit, we find the same results as them and thereby reveal a connection between
mixed-strategy and stable-price predictions.7 However, our predictions differ for any finite
n. This can lead to differences in qualitative predictions. For example, adopting single-stage
pricing within the setting we study implies firm price strategies are independent of n.

We can also straightforwardly accommodate “shoppers” (buyers assumed to retrieve every price)
into our analysis, which are a popular addition to models. The only difference for our stable
prices is an adjustment to the price of the cheapest firm (the firm that serves the shoppers),
which depends on how many shoppers there are. In contrast, the presence of shoppers in a
single-stage model results in multiple firms (all firms, in the symmetric equilibrium) having
their equilibrium mixed strategies depend on how many shoppers there are. The corresponding
analysis with a single-stage of pricing by Janssen and Moraga-González (2004) finds equilibria
in which searchers (those who choose how many quotations to gather) retrieve no more than
one quotation. In contrast, under two-stage pricing such equilibria exist only for a narrow range
of parameter values, and involve no search at all if there are no shoppers.

7As Kalai (2004) shows, many mixed-strategy equilibria become ex-post Nash with arbitrarily many players.
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2. Model

There are n ≥ 2 firms with zero costs. Firms i ∈ {1, . . . , n} decide on their initial pricing
positions p̄i (either collectively or non-cooperatively). Having observed those, firms then have
the opportunity to cut but not raise their price, i.e., they set pi ≤ p̄i, prior to purchases.

A unit mass of buyers, or “searchers”, are each willing to pay v > 0 for one unit. They use a
fixed-sample technology to obtain price quotations. Moving simultaneously, each searcher pays
κq to obtain q ∈ {0, 1, . . . , n} quotations, where 0 < κ < v. We extend the analysis to search
costs that are heterogeneous across searchers, and (at least weakly) convex for each searcher, in
Section 9.8 The buyer then receives q random draws (without replacement) out of the n price
offers. The buyer selects the cheapest offer, with ties broken in any interior way.9,10

We envisage a situation in which buyers search at the same time as firms engage in pricing. To
do this formally, we assume buyers move first and simultaneously choose their search policies.
Those policies are observed by firms, before they choose their initial prices. Any individual
buyer has no measurable influence on future play and so acts as though moving simultaneously.11

We seek solutions in which buyers’ search protocols are best-responses to firms’ prices, and
firms either set efficient undercut-proof prices given buyers’ search protocols, or, best-respond to
buyers’ search protocols (two possibilities that we show to be one and the same in Proposition 1).

3. Stable and Efficient Prices with Costly Fixed-Sample Search

For now, we take buyer search protocols as fixed and examine firms’ responses to them. Let
µq ∈ [0, 1] be the proportion of searchers who pay for q ≥ 0 quotations, so that ∑n

q=0 µq = 1.
Given {µq}n

q=0, we seek prices that are stable in the sense that no firm wishes to undercut any
other. Within that set, we focus on those which are (Pareto) efficient for industry.12

Suppose no searchers retrieve exactly one quotation, so that µ1 = 0. Undercut-proof prices are
forced down so that the Bertrand (zero-profit) outcome realizes (undercut-proofness guarantees
that each consumer has a zero price in their consideration set). We set those cases aside and
continue with µ1 > 0.13 This implies that efficient undercut-proof prices are all strictly positive.

8Relatedly, Moraga-González, Sándor, and Wildenbeest (2017) extend the setting of Burdett and Judd (1983)
to one with heterogeneous search costs (and a finite number of firms).
9In Section 8 we extend the model to include “shoppers”, who (for exogenous reasons) gather all n prices.
10We assume throughout that whenever every buyer sees at least two prices, which forces zero-profits for firms
in any equilibrium, that all prices are zero. This rules out the bizarre equilibria that typically exist in Bertrand
games with a common marginal cost in which some prices are equal to cost (sufficiently many to make all firms
earn zero profit), while others are unrestricted.
11This formulation will allow for firms’ initial pricing stage to be the start of a proper subgame, facilitating
subgame perfection as a solution concept when we study stable prices that emerge from non-cooperative firm
interaction. For the derivation of stable prices we could alternatively assume that buyers do not observe firms’
initial price positions and choose their search protocol simultaneously with firms choice of final retail prices.
12The set of undercut-proof prices is typically large. Putting aside trivial cases in which some firm charges a
price equal to marginal cost, the set is defined by Myatt and Ronayne (2023b, claim (ii) of Lemma 1).
13In fact this is without loss, because, as we show later, any equilibrium with search features µ1 > 0.
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If also µ2 > 0, then undercut-proof prices are entirely distinct. If instead µ2 = 0, then there are
ties in the efficient undercut-proof prices of at least two firms at the monopoly price, v.14 There
are no ties in efficient undercut-proof prices below the monopoly level. For either efficiency or
equilibrium we must have p̄i = pi for all i and so without loss we state only p̄i terms from now.

Without loss of generality, label firms such that p̄1 ≥ · · · ≥ p̄n > 0. Because buyers’ search
technology returns a random subset of price quotations from the pool of prices, buyers’ con-
sideration sets of any given size, q, comprise firm indices drawn randomly and symmetrically
from {1, . . . , n}. It is helpful to denote by Xi, the mass of searchers buying from i:

Xi ≡
i∑

q=1
µq

[(
i − 1
q − 1

)/(
n

q

)]
(1)

The term Xi sums over the relevant consideration-set sizes (no sale is made if q > i because
either q is cheaper than i, or p̄i = p̄q = v in which case µq = 0). For each q, there are

(
n
q

)
equally-sized consideration sets. Firm q makes a sale only if compared to q − 1 others from the
i − 1 firms with higher prices. There are

(
i−1
q−1

)
such sets.

For the case of µ2 > 0, such that equilibrium prices are entirely distinct, firm i earns p̄iXi. For
firm i not to wish to undercut j > i we must have

p̄iXi ≥ p̄jXj. (2)

More generally the set of no-undercutting constraints may be complex, but here buyers’ consid-
eration is spread uniformly across them, which makes the constraints particularly parsimonious.
To be efficient for the industry, the prices p̄j in (2) must be raised as much as possible.

Firm 1 faces no potential undercutters and so charges p̄1 = v in any efficient profile of prices.
It does then not undercut firm 2 so long as vX1 ≥ p̄2X2, which must bind for efficiency and so
determines p̄2 and says that firm 2’s profit is also vX1 from any undercut proof efficient profile.
Firm 1 and 2’s no-undercutting-firm-3 constraints can be written as vX1 ≥ p̄3X3, which gives p̄3

when it binds. Continuing iteratively yields a unique profile of efficient undercut-proof prices.15

Lemma 1 (Stable Prices given Buyers’ Protocol). For a given buyer search protocol
{µq}n

q=0 with µ1 > 0, there is a unique undercut-proof Pareto efficient profile of prices in which:

p̄i = v
X1

Xi

for i ∈ {1, . . . , n}. (3)

When firms set these prices, each firm earns the profit vX1.

14The precise and more general statement is: if µh = 0 for all h ∈ {2, . . . , m} with 2 ≤ m ≤ n, then an efficient
undercut-proof profile has exactly m firms setting the monopoly price, v.
15This constellation of consideration is the full exchangeability setting of Myatt and Ronayne (2023b, Section
6) where our Proposition 4 there encompasses Lemma 1 here. The differences between that paper’s setting and
the present one are that here: (i) firms each have an equal share of consumers with singleton consideration sets
(i.e., “captives”); and (ii) we allow for zero masses of buyers with consideration sets with two or more elements.
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Non-Cooperative Two-Stage Pricing. Lemma 1 gives the (uniquely) efficient and stable
prices for any search protocol from buyers. We now show that those same prices can also be
established non-cooperatively.

By construction, no firm wishes to unilaterally deviate downwards from the initial prices in (3),
and upwards deviations from them are ruled out by assumption. It remains to ask whether
firms would choose to establish those initial pricing positions as part of an equilibrium.

Formally, following searchers’ choice of protocol, we employ a two-stage perfect-information
pricing game. Together, this forms a three-stage game in which

(t = 1) searchers simultaneously choose a search protocol, {µq}n
q=0; then

(t = 2) firms simultaneously choose their initial price positions, p̄i ∈ [0, v]; and lastly
(t = 3) firms simultaneously choose their final retail prices, pi ∈ [0, p̄i].

We look for subgame perfect equilibria. That is, those in which firms choose pure strategies on
the (subgame perfect) equilibrium path.

Definition. If a profile of prices are the on-path pure-stratgies of a subgame perfect equilibrium
of a game, we say that the profile is supported by the equilibrium play of pure strategies.

Consider a profile of prices, p̄1 ≥ · · · ≥ p̄n. If it is supported by the equilibrium play of pure
strategies, then pi = p̄i > 0 for all i.16 It must also be undercut-proof (else there is a profitable
deviation available at the final-stage). Firm 1 must set the monopoly price so that p̄1 = v (if
not, it could profitably raise initial price to v). Similarly, firm 2 can then safely raise its price
to either the point at which 1’s undercutting constraint binds, or v (in the case of µ2 = 0).

Continuing iteratively through the (undercut-proof) prices, raising p̄i until i−1 is indifferent to
undercutting it, we retrieve a candidate profile for the support of the equilibrium play of pure
strategies. The set of prices resulting from the process of iteratively making no-undercutting
constraints bind therefore determines a unique candidate profile. This was exactly the process
that led us to the efficient undercut proof profile of Lemma 1 and so the unique candidate
profile of prices supportable by the equilibrium play of pure strategies is that specified by (3).

We have shown that if a price profile is supported by the equilibrium play of pure strategies,
then it satisfies (3). We now ask the converse: are those prices supported by the equilibrium
play of pure strategies?

Consider the prices in (3). There is no profitable unilateral deviation downwards at the final
stage (by undercut-proofness) or at the penultimate stage (any downwards deviation there
can also be made at the final stage). No upwards deviation is available at the final stage by
assumption. This leaves us to consider upward deviations at the penultimate stage. Such a

16That pi = p̄i follows because a final-stage pure-strategy pi < p̄i can either be profitably raised, or, in the case
of a tie for some buyers’ lowest price, undercut; p̄i > 0 follows because µ1 > 0 means a firm can always set
pi = p̄i = v and make positive profit from the sales to those who only consider i.
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deviation marks the start of a subgame in which we seek a Nash equilibrium that yields a payoff
for the deviator no greater than the payoff that results from the candidate on-path prices. A
modified version of Lemma 6 of Myatt and Ronayne (2023b) applies, which we state next.17

Lemma 2 (Final-Stage Subgames). Consider a buyer search protocol {µq}n
q=0 with µ1 > 0

and the prices in (3), with the exception of firm k : p̄k < v, which deviates to an initial price
p̂k > p̄k. There is a Nash equilibrium in that subgame in which each firm earns the profit vX1.

Suppose that {µq}n
q=0 is a best-response for buyers to the prices in (3). In combination with the

lack of other profitable unilateral firm deviations, Lemma 2 shows that the prices in (3) are the
on-path play of a subgame perfect equilibrium. (To complete the specification of a subgame
perfect equilibrium, we allow any equilibrium to follow in subgames that are further off-path.)

Of course, we have not said anything about buyers’ optimal protocol in t = 1, which will be
our next focus, but we can now summarize firms’ equilibrium behavior.

Proposition 1 (Stable Prices in a Two-Stage Pricing Game). Fix a given buyer search
protocol {µq}n

q=0 with µ1 > 0 and consider the two-stage pricing game starting at t = 2. A
profile of prices is supported by the equilibrium play of pure strategies in the two-stage pricing
game if and only if it is the efficient undercut-proof profile of prices given in (3).

When consumers consideration sets are formed by the protocols considered in this paper, the
equilibrium pricing strategies of a single-stage pricing game (in which firms simultaneously set
prices), which are necessarily in mixed strategies, typically do not have analytic solutions (see,
for example,). In contrast, with Proposition 1 we provide a unique and concise pure-strategy
prediction for prices. Each price is equal the ratio of the monopoly profit to the number of
buyers the corresponding firm serves in equilibrium.

4. Search protocol in any equilibrium with search

Searchers decide how many draws to take from the pool of firm prices. This generates a single
(possibly degenerate) distribution (regardless of firms’ strategies), from which searchers draw.
Here, we fix firms’ behavior and examine buyers’ optimal response to it.

If all searchers gather two quotations or more, so that µ0 = µ1 = 0, then all buyers observe at
least two prices, and Bertrand competition pushes prices to zero, so consumers strictly prefer to
search less. As such, at least one of µ0 and µ1 is strictly positive in any equilibrium. If µ1 = 0
then µ0 = 1, else some buyers observe at least two prices while no buyer sees exactly one, and
so once again prices tend to zero, and those searching twice or more would prefer to search

17Myatt and Ronayne (2023b) assumed the analog of µ2 > 0, which guarantees that any equilibrium of the sort
we seek has entirely distinct on-path prices. Because here we allow µ2 = 0, we need to cover cases in which
there may be ties in on-path prices at the monopoly price, v. The relevant proof of Myatt and Ronayne (2023b)
is (trivially) extended to cover such subgames by noting that having multiple firms at the top pricing position
does not alter the analysis (symmetry implies the undercutting conditions are the same for all such firms) and
so in any off-path subgame, one can let them (continue to) price at v so that they do not disturb Lemma 2.
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less. And indeed there are equilibria with µ0 = 1, but these are trivial no search equilibria with
firms charging prices in any compatible way (most obviously p̄i = v for all i).

The reasoning above tells us that in any equilibrium with search, some buyers must gather
one price, so that µ1 > 0. We cannot have all searchers getting one quotation, or firms would
respond by all charging the monopoly price, and searchers would rather not search. And so
µ1 ∈ (0, 1) and µq for some q ≥ 2, i.e., in any equilibrium with search, some (but not all)
searchers gather exactly one quotation while others gather more than one.

From the properties of order statistics, the expected minimum draw is (at least weakly) de-
creasing in the number of draws, and at a (at least weakly) decreasing rate. This means there
are (at least weakly) decreasing returns to search. On the cost side, searchers have the same
constant marginal cost of search, κ > 0. Together these facts imply that no two searchers can
obtain two (or more) quotations more than any other searcher.18 Together, these points tell us
that in any equilibrium with search, µ1 + µ2 = 1 and µ1 > 0. Lemma 3 collects these points.

Lemma 3 (Number of Quotations in any Equilibrium). In any equilibrium, search
behavior falls into one of two categories.

1. There is no search (i.e., µ0 = 1) in which case there exist trivial equilibria in which firms
price sufficiently high such that no searcher wishes to search even once.

2. There is search: some searchers gather exactly one quotation, while others gather two, i.e.,

µ1 + µ2 = 1 and µ1 ∈ (0, 1). (4)

The second point of the lemma is exactly Claim 1 of Burdett and Judd (1983, Section 3.2).
Neither of our model’s differences from theirs (two-stage pricing and a possibly finite number
of firms, n) were relevant for the arguments deriving equilibrium searcher behavior above, and
so we reach the same conclusion as them.

For fixed firm behavior, our predictions for equilibrium buyer behavior coincide with those
found with a single-stage pricing game because in either case buyers choose how many draws
to take at random from a distribution of prices and take expectations accordingly. Whether
that distribution is a result of firms employing mixed or pure strategies is not relevant.

However, and as we will see next, the stark differences in the nature of prices from our two-stage
approach have numerous implications.

18A special case is found with n = 2, where we can construct an equilibrium in which µ0, µ1, µ2 > 0. A
slight change to our model eliminates this multiplicity. If we assume that the second quotation is slightly more
expensive than the first then once again any equilibrium can only involve two adjacent search strategies.
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5. Prices in any equilibrium with search

We have shown that in any equilibrium with search, some searchers gather two price quotations
so that every firm goes head-to-head with every other firm.19 As per the prices we derived in
Section 3, given by (3), this ensures that any prices supported by the equilibrium play of pure
strategies must involve n distinct prices (prices are positive (because µ1 > 0) and so a tie
between i and j would leave both with an incentive to undercut the other).

Because µ2 > 0, the quantity of sales to searchers made by each successively lower-priced firm
is increasing: X1 < · · · < Xn. Efficient undercut-proof prices are such that each step down
the ladder of prices is exactly compensated for by a corresponding increase in sales. Bringing
together equilibrium search behavior and optimal stable prices produces Proposition 2.

Proposition 2 (Prices in any Equilibrium with Search). In any equilibrium with search,
some buyers search once and some twice (case 2 of Lemma 3), and there is a unique profile of
prices supported by the equilibrium play of pure strategies, such that for all i ∈ {1, . . . , n}

p̄i = vµ1(n − 1)
µ1(n − 1) + 2(1 − µ1)(i − 1) . (5)

As n → ∞ these prices converge to a continuous distribution with support on [vµ1/(2 − µ1), v]

F (p) = 1 − v − p

2p

µ1

1 − µ1
. (6)

Analyzing the prices reported in Proposition 2 yields the observations in Corollary 1.

Corollary 1. Prices are decreasing in the proportion, µ2, of buyers who gather two quotations.

The highest price is p̄1 = v and the lowest is p̄n = vµ1/(2 − µ1). If n is odd, then the median
price is equal to vµ1. Similarly, if n + 3 is a multiple of 4 then the n+3

4
th and 3n+1

4
th highest

prices are p̄n+3
4

= vµ1
2

3−µ1
and p̄ 3n+1

4
= vµ1

2
1+µ1

, respectively.

The average price charged is lower in an industry with n > 2 competitors than in a duopoly.

Each firm earns profit of vµ1/n, and so the average paid by a buyer is equal to vµ1.

The final claims concern profitability and so (equivalently) the average price paid. A fraction
of µ1/n of customers are effectively captive to each firm. A fraction 1 − µ1 make pairwise
comparisons. The most expensive firm loses any comparisons, and so earns the profit from
exploitation of captive customers. The price construction means that all firms earn equal
expected profit. The average price paid does not depend directly on the number of competitors.
Instead, it depends buyers’ actions: more intensive search lowers the distribution of prices
posted (in fact it lowers every price except the most expensive, which is constant at p̄1 = v).

19In Myatt and Ronayne (2023b, claim (i) of Lemma 1), we showed this (“twoness”) condition, in addition to
captive consumers for each firm, is sufficient for positive undercut-proof prices to be entirely distinct.
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Greater search intensity

pr
ic

es
p̄1

p̄n

Lesser search intensity

pr
ic

es

p̄1

p̄n

Number of firms, n

2 3 4 5 6 7 8 9

Figure 1. The distribution of prices (given in Proposition 2) for n ∈ {2, . . . , 9}.
The highest (p̄1 = v) and lowest (p̄n = vµ1/(2 − µ1)) prices do not vary with n.
Upper panel: µ2 = 3/5; a majority of buyers gather two prices (a minority, one).
Lower panel: µ2 = 1/5; a minority of buyers gather two prices (a majority, one).
Dotted lines: the median, n+3

4
th and 3n+1

4
th highest prices (when well-defined).

Although the average price paid is independent of n, the distribution of prices charged is not.
Notably the average price is not increasing in n. Beyond the statement in Proposition 2 we
can also show that this average is decreasing for n ∈ {2, . . . , 10}. This stands in contrast to
the symmetric mixed-strategy predictions from single-stage pricing, in which firms’ equilibrium
pricing distribution depends only on the number of quotations buyers retrieve, not the number
of firms.20 The key difference here is the nature of pricing. Instead of each firm continuously
mixing in an i.i.d. fashion over an interval of prices, we predict that each firm charges one
price. As n increases, prices file in between the highest and lowest prices, p̄1 and p̄n, which are
invariant to n. We provide two illustrations (for two different levels of µ2) of this in Figure 1.

20See, for example, Burdett and Judd (1983, Section 3.1), Moraga-González, Sándor, and Wildenbeest (2017,
equation 3), or Ronayne (2021, Section 3.3). In the current setting with µ2 > 0 and single-stage pricing, Johnen
and Ronayne (2021) show the symmetric equilibrium is the unique equilibrium. For a more general treatment
of single-stage pricing with symmetric consideration sets, see Armstrong and Vickers (2022, Section 3).
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We now make a connection between the equilibria with stable prices that we report, and those
in the literature. The mixed equilibria of single-stage models are not ex post Nash for finite
n. But as n → ∞, the equilibria of a large class of games become ex post Nash (Kalai,
2004, Theorem 1). The mixed-strategy equilibria of the single-stage pricing models we have
examined are no exception. In fact, as n → ∞ in our model, prices organize themselves in such
way as to asymptotically produce the exact same distribution, F of (6), as reported in those
studies.21 Hence both paradigms are robust to ex post deviations in the limit, but only there.
The difference is that our equilibrium is ex post Nash for all n, not only when n → ∞.

6. The benefit of a second search

Now we consider optimal searcher behavior. Using the prices of Proposition 2 we need to find
the marginal gain to a buyer from obtaining their second quotation (weakly lower than the gain
from the first quotation), which we term Bn. An equilibrium with search obtains when Bn = κ.

Consider, for example, the duopoly case (n = 2) for which the two prices are p̄1 = v and
p̄2 = vµ1/(2−µ1). A single quotation finds the cheaper firm with probability 1/2 and generates
benefit v − p̄2. Two quotations give this benefit with certainty. Therefore, B2 = (v − p̄2)/2.22

Now consider n ≥ 2 firms. With probability 1/n the first quotation is p̄1. The gain from the
second search is p̄1 − p̄i cheaper price (of a remaining firm i > 1) is found, which happens with
probability 1/(n − 1). With probability 1/n the first quotation is p̄2. The gain from the second
search is zero if the more expensive p̄1 is drawn, but p̄2 − p̄i when a cheaper price (of a firm
i > 2), which happens with probability 1/(n − 1). Continuing iteratively,

Bn = 1
n

( 1
n − 1 [(p̄1 − p̄2) + · · · + (p̄1 − p̄n)]

)
+ 1

n

( 1
n − 1 [(p̄2 − p̄3) + · · · + (p̄2 − p̄n)]

)
+ · · · + 1

n

( 1
n − 1(p̄n−1 − p̄n)

)
, (7)

where prices, p̄i, are those specified in (3). Reorganizing terms, we obtain (9) in Proposition 3.
For large markets (when n → ∞) we can compute the expected benefit of a second search as

B∞ = EF [p] − EF [min{p′, p′′}], (8)

where F is the distribution of prices given in (6) and min{p′, p′′} denotes the minimum of two
(randomly drawn) prices. We solve this and arrive at Proposition 3.

21See, for example, Burdett and Judd (1983, equation 2). There, n is large throughout, but with single-stage
pricing, the exact same CDF in symmetric mixed-strategies is recovered for any finite n ≥ 2. And so when n is
assumed to be finite, strategies are necessarily not ex post Nash.
22For this special case of n = 2, the marginal benefit of both the first and second quotations is equal to (v−p̄2)/2.
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Proposition 3 (Buyers’ Benefit from a Second Search). Given firms set prices as given
in Proposition 2, the expected benefit to a buyer from a second search is

Bn = 1
n(n − 1)

n∑
i=1

(n − 2i + 1)p̄i. (9)

As the number of firms grows arbitrarily large, the expected benefit from a second search is

B∞ = v

2
µ1

1 − µ1

(
1

1 − µ1
log

(
2 − µ1

µ1

)
− 2

)
. (10)

For any n and µ1 ∈ (0, 1), Bn is strictly positive; is strictly concave in µ1; and converges to
v/n as µ1 ↓ 0 and 0 as µ1 ↑ 1.

Proposition 3 reports some properties of the expected benefit of the second search. As µ1 ↑ 1, all
prices converge to the monopoly price, and so Bn ↓ 0. One can also confirm that Bn converges
to v/n as µ1 ↓ 0. This is because p̄i ↓ 0 for i > 1 while p̄1 = v, and so a second search is only
helpful in the case that a buyer draws p̄1 = v with their first search (so that a second search
guarantees a benefit of v − 0), which happens with probability 1/n.

7. Equilibrium

We now bring together the work in the preceding sections. An equilibrium with search specifies
a value of µ2 ∈ (0, 1) (or 1 − µ2 = µ1 ∈ (0, 1)) that sets the expected benefit of the second
search equal to the cost of the second search:

Bn = κ. (11)

From Proposition 3, there is at least one equilibrium with search, and at most two, so long as
κ < v/n. Of course, that condition is onerous as the number of firms grows. However, we will
show that this is only a relevant parameter constraint for small oligopolies. Before exploring
the set of equilibria more, we examine the stability of equilibria with search.

Stable Equilibria with Search. Suppose µ∗
2 ∈ (0, 1) solves Bn = κ and so gives an equilib-

rium with search. Consider a perturbation in which we take some (sufficiently small) number of
buyers searching once, make them search twice instead, and let firms recompute prices with the
new profile of buyer behavior. If Bn is strictly upward sloping in µ2 at µ∗

2, then the perturbation
makes the second search more attractive such that all buyers would strictly prefer to search
twice, and so the equilibrium at µ∗

2 unravels. Instead, if Bn is strictly downward sloping in µ2

at µ∗
2, then the perturbation makes the second search less attractive and so those buyers would

strictly prefer to switch back to searching once, reinstating the equilibrium at µ∗
2. In this sense

we refer to any equilibrium with former property as unstable and any with the latter as stable.

The case above considered a perturbation increasing search. For an equilibrium to be stable
we require stability for perturbations increasing and reducing search. This leads to Lemma 4.
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Figure 2. Equilibrium with homogeneous and linear search costs. The benefit
of buyers’ second search, Bn, for n ∈ {2, 3, 4, 5, 9, ∞} is shown with solid lines.
An example cost level, κ = v/8, is shown with a dashed line. With n ≤ 5 there
is one equilibrium with search, which is unstable. With n = 9 there are two with
search, one unstable (the one with lower µ2) and one stable (with higher µ2).

Lemma 4 (Stability of Equilibria with Search). An equilibrium with search (with equilib-
rium search intensity µ∗

2) is stable if and only if Bn cuts κ at µ∗
2 from above, i.e.,

dBn

dµ2

∣∣∣∣∣
µ2=µ∗

2

< 0. (12)

Oligopoly. For small oligopolies with n = 2, 3 or 4 firms, it is straightforward to confirm that
Bn is strictly decreasing over µ1 ∈ (0, 1). This tells us that there exists an equilibrium with
search if and only if κ < v/n, and that when one exists, it is unique. But by Lemma 4, it is
unstable.23 The only other equilibrium in the model is for there to be no search, i.e., µ0 = 1 (as
per case 1 of Lemma 3), and the market breaks down. Figure 2 provides a visual counterpart
to this reasoning while Proposition 4 summarizes the points.

Proposition 4 (Equilibrium in Small Oligopolies). Consider oligopolies with n = 2, 3, 4.
An equilibrium with search exists if and only if κ < v/n. If one exists, it is both unique and
unstable. The only other equilibrium, which is stable, is that with no search (case 1 of Lemma 3).

23For n ∈ {2, 3}, that equilibrium’s quantities are concise and we report them in the appendix’s Proposition A1.
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However, the lack of a stable equilibria with search is confined to the smallest oligopolies. In
fact, and as we prove in the appendix, as we move from n = 4 to n = 5, the peak of Bn is
reached at an interior point, µ2 ∈ (0, 1), which implies there is a range of values that κ can
take such that there are exactly two equilibria, one of which is stable.

Proposition 5 (Stable Equilibrium Existence and Uniqueness). There is an open set
of search cost values for which a stable equilibrium with search exists if and only if n ≥ 5. If a
stable equilibrium with search exists, it is the only one.

Restricting our attention to the stable equilibrium with search we can consider the impact of a
change in the search cost, κ, which we state in Corollary 2.

Corollary 2 (Comparative Static with respect to Search Cost). Suppose n ≥ 5 and
consider two search cost levels, κ′ > κ′′, for each of which a stable equilibrium with search exists.
Equilibrium search is greater, prices are lower, and consumer welfare is higher, with κ′ than κ′′.

Large Markets. Given the equivalence of our equilibrium with that in the literature for a
large number of firms, we derive optimal search by following Burdett and Judd (1983, Section
3.2). The expression for B∞ given in (10) is exactly what comes out of their equations (2)-(3).
It is single-peaked, rising from zero at µ2 = 0 and falling back to zero at µ2 = 1. This implies
that if κ is sufficiently small there are (generically) two equilibrium values for µ2. And by
Lemma 4 exactly one (the one with more search, i.e., greater µ2) is stable.

Proposition 6 (Equilibria with Many Suppliers). Consider n → ∞. There is some κ̄

such that if κ < κ̄ then there are two equilibria of which the one with more search is stable.

As discussed, our predictions depart markedly from those with single-stage pricing for finite
n and coincide in the limit as n → ∞. This means that equilibria are distinct in a setting
with stable prices vis-á-vis the mixed-strategies arising from single-stage pricing games. In
particular, for a given κ, equilibria with search and stable prices have different levels of search
and hence prices, profits and consumer welfare. In addition, because Bn is a function of n with
stable prices, comparative statics are available with respect to entry.

In particular, replacing our stable prices with the symmetric mixed-strategy equilibrium strate-
gies from a single-stage pricing game (but otherwise leaving the model unchanged), would (as
discussed in Section 3) leave equilibrium strategies (both firm’s pricing and buyers’ search
choices) independent of n. Therefore, all equilibrium outcomes are invariant to the number of
competing firms. In stark contrast, we find outcomes from equilibria with search depend on n.

One aspect of the classic search setting we studied so far is that search costs are homogeneous
across buyers and linear for each buyer. We relax those assumptions in Section 9 and show how
richness there can result in stable equilibria that feature search (regardless of n). But first we
examine how our analysis (so far with buyers who endogenously choose how many quotations
to receive) accommodates the addition of buyers who see all prices.
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8. Incorporating Shoppers

We have modeled buyers who (endogenously) choose how many quotes to retrieve. A popular
and different specification additionally allows for “shoppers” who (for exogenous reasons) see
all prices (as in classic papers such as Rosenthal, 1980; Stahl, 1989; Varian, 1980, and many
since). Such an assumption is often convenient, for example, it ensures some price comparisons
are made and therefore avoids the Diamond paradox or trivial equilibria with no search (such
as that in case 1 of Lemma 3). We now show how our analysis extends to include shoppers.

Specifically, a proportion, λS ∈ [0, 1), of buyers are now shoppers (who buy at the lowest price
among all firms).24 The model is otherwise unchanged. The remaining 1 − λS ∈ (0, 1] buyers
are the (endogenous) “searchers” we studied so far.25 The co-existence of both buyer types in a
fixed-sample search setting brings the demand-side assumptions away from Burdett and Judd
(1983) and in line with those of Janssen and Moraga-González (2004).

Stable prices in the presence of shoppers. We arrived at the stable prices in (3) by
considering (binding) no-undercutting constraints such that each firm charges the highest price
they can such that no more-expensive rival wishes to undercut them.

We can apply our earlier analysis replacing each Xi term with (1−λS)Xi. The no-undercutting
constraints for firms i < n−1 to undercut non-cheapest firms j ∈ {2, . . . , n −1} are unchanged
(firm 1 does not face potential undercuts and so p̄1 = v) and so those p̄j are exactly as in (3),
and their profits are v(1 − λS)X1. Therefore, no firm i < n wishes to undercut p̄n if

v(1 − λS)X1 ≥ p̄n((1 − λS)Xn + λS), (13)

which binds in any equilibrium. Re-arranging gives the stable price predictions in (14).

p̄i = v
X1

Xi

if i ∈ {1, . . . , n − 1} and p̄n = v
(1 − λS)X1

(1 − λS)Xn + λS

. (14)

This updates the predictions of (3) to include shoppers. The affect shoppers have on equilibrium
prices with our two-stage pricing is simple: the lowest price is adjusted downwards according
to how many shoppers there are, while all other prices are independent of shoppers.

In contrast, the (necessarily mixed-strategy) equilibria of the corresponding single-stage pricing
models spread the affect of shoppers across multiple firms, and in the case of the (most com-
monly studied) symmetric equilibrium, all firms. Such (random) equilibrium pricing strategies
means every mixing firm thinks about the fact they may be cheapest and so may serve shop-
pers. This encourages them to place some of their pricing distribution’s probability mass at
low prices. On the other hand, they do not want to price too low, because then they would
rather give up on the shoppers and charge the monopoly price to (captive) buyers who receive
a quotation only from them. This trade-off leads to the mixed-strategy pricing in equilibrium.

24The assumption that λS > 0 has been justified by appealing to the fact that some people enjoy shopping
(Stahl, 1989) or have no opportunity cost of time (Janssen and Moraga-González, 2004).
25In the trivial case that all buyers are shoppers, i.e., λS = 1, the Bertrand (zero-profit) outcome follows.
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That tradeoff is there in our model too, but our two-stage approach allows for it to be resolved
through no-undercutting constraints, leading to the equilibrium play of pure strategies.

Optimal search protocols in the presence of shoppers. The same arguments as without
shoppers ensure that at least one of µ0 and µ1 is strictly positive in any equilibrium. But now
we cannot have µ0 = 1 because then shoppers are the only active buyers so prices are competed
to zero, so searchers would strictly prefer to take one quotation, a contradiction (and so we rule
out case 1 of Lemma 3). This implies µ1 > 0 in any equilibrium.

This means that the set of prices charged by firms, specified in (14) contains more than one
price, and so the distribution from which searchers draw is non-degenerate. This means there
are typically strictly decreasing gains to search. In combination with the constant and common
marginal cost of search, it implies that no two searchers can obtain two (or more) quotations
more than any other searcher.26 We collect these observations in Lemma 5.

Lemma 5 (Number of Quotations in Equilibrium with Shoppers). In equilibrium
µq = 0 for q ≥ 3, and µ1 > 0: searchers gather at most two quotations, and some gather exactly
one. In terms of µ0 and µ2, there are three possibilities for equilibrium searcher behavior:

(i) µ0 ∈ (0, 1) and µ2 = 0; (ii) µ0 = 0 and µ2 = 0; (iii) µ0 = 0 and µ2 ∈ (0, 1). (15)

These potential equilibrium searcher strategies are exactly those found with the single-stage
pricing game. Janssen and Moraga-González (2004) term them the “low”, “moderate”, and
“high” search intensities, respectively. We also adopt that terminology.

Low and Moderate Intensity: Searching Once or Never. We search for equilibria in
which µ0 + µ1 = 1 and µ1 > 0. In this case, µq = 0 for q > 1 and we have

(1 − λS)X1 = (1 − λS)Xi = (1 − λS)µ1/n for all i, (16)

which, using (14), implies prices are given by

p̄1 = · · · = p̄n−1 = v and p̄n = v
(1 − λS)X1

(1 − λS)X1 + λS

. (17)

In this setting, the only buyers in the market (i.e., excluding any getting zero quotations) are
“captives” (with singleton consideration sets) and shoppers. In this captive-shopper setting
with symmetric firms, the symmetric mixed-strategy best-replies in single-stage pricing games
are famously derived by Varian (1980). In addition to the symmetric equilibrium, there is
also an uncountable infinity of asymmetric (mixed-strategy) equilibria (Baye, Kovenock, and
de Vries, 1992). In contrast, there is a unique profile of stable prices that emerges from two-stage
pricing in the (symmetric) captive-shopper setting, as characterized by (17).27

26A special case is found with n = 2, where we can construct an equilibrium in which µ0, µ1, µ2 > 0. In that
case, searchers collecting two prices are functionally equivalent to shoppers from the persepctive of firms.
27In settings with asymmetries in captive shares and single-stage pricing, see Baye, Kovenock, and de Vries
(1992, Section V). For a treatment allowing asymmetries in captive shares and marginal costs covering both
single-stage and two-stage pricing, see Myatt and Ronayne (2023a).
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Turning to optimal search, a quotation costs κ and earns surplus v − p̄n if firm n supplies
the quotation, which happens with probability 1/n, and earns zero surplus if they do not find
firm n’s quotation. The fact that a buyer is searching for a single lowest price means that the
gains from search (just like the costs) are linearly increasing in the number of quotations q;
the probability that q searches without replacement find the cheapest firm is q/n. This means
that if it is strictly preferred to search for one quotation rather than none, then it is strictly
optimal to search for quotations from all n suppliers. To construct an equilibrium with low or
moderate search therefore requires a searcher to be exactly indifferent between searching and
not. Solving for µ1 and checking that µ1 ∈ (0, 1] yields the following result.

Lemma 6 (Equilibrium with Low or Moderate Search). If n < v/κ ≤ n − 1 + (1/λS)
then there is an equilibrium in which the following proportion of searchers get a single quotation

µ1 = λS

1 − λS

(
v

κ
− n

)
, (18)

while the 1 − µ0 others do not search, and firms set prices as per (17), which can be written

p̄1 = · · · = p̄n−1 = v and p̄n = vµ1(1 − λS)
µ1(1 − λS) + λSn

. (19)

Moderate search intensity (with µ1 = 1) obtains only for a degenerate set of parameters.

Janssen and Moraga-González (2004) defined a “moderate search intensity” equilibrium as one
in which every buyer obtains exactly one quotation, so that µ1 = 1. For generic parameters
(the exception is when n − 1 + (1/λS) = v/κ) there is no such equilibrium.28 Therefore, our
solution corresponds to their “low search intensity” equilibrium. Interestingly, they (in their
Propositions 4–5) established the existence of such an equilibrium when n is large. In contrast,
we also require n to be sufficiently small.29 The equilibrium property that only one firm chooses
a price lower than v means that buyers are searching for the proverbial needle in the haystack.
When n is large enough, even for low cost-to-value ratios, buyers prefer not to search at all.

More generally, the fraction of those who search is decreasing in n. An increase in n also pushes
down the lowest price while making the highest prices (equal to v) more frequent, and so makes
the distribution of prices riskier while the average price remains constant.30

However, perhaps the most important observations concern the fraction of shoppers who ex-
ogenously see all prices. Suppose n < v/κ ⇔ κ < v/n (so that a buyer would search once
if λS ↓ 0; note limλS↓0 p̄n = 0 so buyer surplus from finding firm n’s price goes to v, so

28Our game (with pure-strategy play) rules out Propositions 1–3 of Janssen and Moraga-González (2004) which
correspond to their moderate-intensity equilibrium. In their world, the use of single-stage pricing and hence
mixed strategies means there are many different possible prices. This implies that there are decreasing returns
to search, which contrasts with the linearity here. One way to recover existence for a non-degenerate set of
parameters would be to assume that search costs are strictly increasing, rather than constant.
29The number of firms cannot be too small (because of the second inequality in Lemma 6): if v/κ > (1+λS)/λS

then that second inequality fails for n small enough. This is because too few firms can make the probability
that a searcher finds the low price so high that all searchers wish to search. The fact that the low price rises as
n falls tempers this effect, but does not undo it.
30These results reinforce those reported in Proposition 5 of Janssen and Moraga-González (2004).
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the expected marginal benefit from search goes to v/n). If λS is small, then the inequality
v/κ < n − 1 + (1/λS) required for existence holds. However, as this fraction becomes negligible
trade collapses: µ1 ↓ 0 as λS ↓ 0 i.e., endogenous search falls to zero as the exogenous search
is removed from the model. In essence this says that a low search intensity equilibrium is a no
search equilibrium. Equilibria in which searchers gather at most one quotation require there
to be buyers who are willing to search for exogenous reasons.

Equilibria with Search and Shoppers. We have shown that lower (at most one quotation)
search intensities either are not chosen in equilibrium or involve negligible search. This leaves
us with the case (iii) of Lemma 5, i.e., high search intensity. That was the only possibility for
buyer behavior in an equilibrium with search in the model without shoppers (Lemma 3).

Expanding the analysis to include shoppers is therefore straightforward because of stable prices.
On the buyer side, we can just focus on searchers gathering one or two quotations. And as
discussed, (14) says us we only need to adjust p̄n given that some searchers gather one price
and others two, to incorporate shoppers on the firm side.31 Solving for the equilibrium then
proceeds in exactly the same way as described in Section 7. There are differences in the
equilibrium quantities, but no qualitative results change. Proposition 7 summarizes.

Proposition 7 (The Effect of Shoppers). Suppose λS ∈ (0, 1) of buyers are shoppers, while
1 − λS are searchers. For generic parameters, any equilibrium with search features searchers
obtaining one or two quotations. Otherwise, the results of Propositions 4 to 6 apply.32

As discussed earlier for the case of λS = 0, stable prices imply a buyer’s benefit of a second search
is a function of n. The presence of shoppers had a negligible impact on our analysis because the
effect of the shoppers is completely absorbed by the firm with the lowest price, as they are the
firm that serves them. The corresponding single-stage analysis finds that the (symmetric and
mixed-strategy) pricing distribution depends on n, and hence so does the buyers’ benefit from
a second search (Janssen and Moraga-González, 2004). The reason for this is that the size of
shoppers’ consideration set is n, and so, as the number of firms increases, so does (shoppers’)
search behavior. Again, predictions under stable prices and symmetric mixed strategies are
distinct. For example, in a duopoly we have two distinct price points while with n → ∞ we
have a distribution of prices laid out between those exact two duopoly prices. In contrast,
Janssen and Moraga-González (2004) show that the symmetric mixed-strategy resulting from
a single-stage game is exactly the same with duopoly and with many firms, leading to results
regarding the how expected prices vary with entry (their Proposition 8).

31Specifically, the lowest price becomes p̄n = vµ1(1−λS)
(2−µ1)(1−λS)+λSn , which converges to p̄n in (5) as λS → 0. For a

depiction of how prices differ, in the appendix we illustrate the distribution of prices in the presence of shoppers
in Figure A0, which can be compared to the upper panel of Figure 1.
32One quantitative adjustment is required if λS > 1/3. In that case, Proposition 4 instead holds for n = 2, 3
and Proposition 5 instead holds for n ≥ 4.



19

9. Heterogeneous and Convex Search Costs

In the preceding sections we assumed that each buyer’s search cost is the same (homogeneity)
and that the marginal cost of search is constant (linearity). Here we examine how things change
when each buyer’s search costs are heterogeneous and convex over the first two searches.

We assume that each buyer b faces costs κb(j) for their jth search such that κb(2) ≥ κb(1) > 0
and κb(j) for all j > 2 is sufficiently high such that no buyer searches more than two times.33

Doing so allows us to build naturally on the analysis of the previous sections, which is nested at
κb(1) = κb(2) = κ = K−1 for all b. To model the heterogeneity of κb(2), we assume it is drawn
from some continuous distribution K the support of which is some interval [

¯
κ, κ̄] ⊆ (0, ∞).

These assumptions do not affect the results that buyers continue to search once or twice in any
equilibrium with search, and therefore also do not affect firms’ pricing. As such, we can look
for equilibria with search as before, by looking for values of µ2 at which

Bn = K−1. (20)

Lemma 4 is also unaffected by the search cost heterogeneity and tells us that stable equilibria
are found where Bn cuts K−1 from above. By considering the properties of these functions, we
can arrive at several observations regarding the set of equilibria.

Firstly, if there are equilibria with search, at least one is unstable (because K−1(0) > 0).
Secondly, conditions which together imply the existence of a stable equilibrium with search are
that (i) there is an unstable equilibrium with search (which guarantees Bn cuts K−1 at least
once); and (ii) some buyers have sufficiently high search costs (to guarantee Bn cuts K−1 a
second time, necessarily from above).34 We collect these observations in Proposition 8.

Proposition 8 (Heterogeneous and Convex Search Costs). If an equilibrium with search
exists and some buyers have sufficiently high second-search costs, then there is at least one
equilibrium with search that is stable.

First Search for Free. A popular assumption for search models is that the first search is
free (and all buyers make that search). This removes equiliibria without search (case 1 of
Lemma 3).35 We adopt that too, assuming κb(2) ≥ κb(1) = 0, and that the lower bound of the
distribution of costs for the second search is zero, i.e.,

¯
κ = 0. For convenience we also assume

K is continuously differentiable so that it has a continuous density function, k.

Because of the properties of Bn (Proposition 3), we can find properties on the distribution
of search costs that dictate equilibrium existence and uniqueness. Specifically, so long as the
slope of K−1 at zero (denoted by K−1′) is not too steep (equivalently, the density at zero,

33For example, κb(j) > v/2 would be sufficient because Bn is bounded from above by v/2.
34For example, κ̄ > v/n would satisfy (ii) because Bn = v/n at µ2 = 1.
35This means that there is search in any equilibrium. The cases with no search are replaced by Diamond
equilibria in which all buyers search exactly once.
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Figure 3. Equilibrium with heterogeneous and convex search costs. The second
search’s benefit, Bn, for n ∈ {2, 3, 4, 5, 9, ∞} is shown by solid lines. An example
inverse CDF of second-search costs satisfying the conditions of Proposition 9 is
shown with the dashed line: there is a unique and stable equilibrium with search.

k(0), is large enough) and K−1(1) is sufficiently large, then there exists at least one equilibrium
with search, where at least one is stable.36 We loosely interpret these as requiring there to be
sufficiently many buyers with low and at least some with high second-search costs, respectively.
In other words, they require sufficient heterogeneity in second-search costs.

If, in addition, the distribution of second-search costs, K, is concave (so K−1 is convex), then
there is a unique equilibrium with search. We collect these observations in Proposition 9. An
example distribution satisfying these assumptions and requirements is illustrated in Figure 3.

Proposition 9 (Heterogeneous and Convex Costs with First Search for Free). Suppose
buyers’ first search is free and the distribution of second-search costs satisfies

¯
κ = 0.

If K−1′(0) < v/3 and K−1(1) > v/n, then a stable equilibrium with search exists.

If, in addition, K is concave, then there is a unique and stable equilibrium with search.

36We continue to refer to “equilibria with search” and when the first search is for free we mean that to refer to
equilibria in which µ2 > 0.
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Appendix: Omitted Proofs

This appendix provides proofs for results not fully proved in the main text followed by supple-
mentary material concerning the extension with shoppers (Figure A0 and Proposition A1).

The proofs below allow for any proportion of “shoppers” λS ∈ [0, 1), as introduced to the
analysis in Section 8, and therefore nest the results of sections where λS = 0.

Proof of Proposition 2. Because µq = 0 for q > 2, (1), adjusted to include shoppers simplifies:

Xi = (1 − λS)
(

µ1

n
+ 2µ2(i − 1)

n(n − 1)

)
. (A1)

Along with X1 = (1 − λS)µ1/n, we can substitute terms into (14) to find the prices stated.

Now consider n → ∞. The proportion of shoppers, λS, only impacts the lowest price. As n

grows large, the probability of any given price being chosen falls to zero and so the impact of
shoppers disappears. As such we set λS = 0. Take any price p within the interval bounded
by these highest and lowest prices, p̄1 and p̄n, and write Fn(p) for the cumulative distribution
function of prices. For finite n,

Fn(p) = n − i

n − 1 ⇔ p̄i−1 > p ≥ p̄i ⇔

µ1(n − 1)v
µ1(n − 1) + 2(1 − µ1)(i − 2) > p ≥ µ1(n − 1)v

µ1(n − 1) + 2(1 − µ1)(i − 1)
i − 2
n − 1 <

µ1

1 − µ1

v − p

2p
≤ i − 1

n − 1 ⇔ i =
⌈
(n − 1) µ1

1 − µ1

v − p

2p

⌉
+ 1, (A2)

where “⌈·⌉” means “the least integer weakly greater than.” Hence

Fn(p) = 1 − 1
n − 1

⌈
(n − 1) µ1

1 − µ1

v − p

2p

⌉
, (A3)

converges to F (p) as reported, as n → ∞. Let the distribution of the minimum of two random
draws from F (·) be G(p) = 1−(1−F (p))2. Taking expectations appropriately, we can compute
B∞ = EF [p] − EG[p] to give the expression stated. □

Proof of Corollary 1. The claim regarding the effect of µ1 (or µ2) on prices holds by inspection.

For the median price, suppose that n is odd. The median firm i satisfies i − 1 = (n − 1)/2.
Applying the pricing solution for this firm yields p̄i = µ1v as claimed. Similarly if n + 3 is a
multiple of 4 then the i − 1 = (n − 1)/4 and i − 1 = 3(n − 1)/4 may be applied accordingly to
recover the n+3

4
th and 3n+1

4
th highest price, respectively.

The final claims follow because each firm is indifferent between the specified list price and
charging v to captives, and because the average price paid equals industry profit. □
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Proof of Proposition 3. To see some of the properties of Bn, it is instructive to rearrange it as

Bn = 1
n(n−1) [(n − 1)(p̄1 − p̄n) + (n − 3)(p̄2 − p̄n−1) + . . . ] , (A4)

so that we can see Bn as the weighted sum of decreasingly-less-polar pairs of prices. Defining
f(i) = p̄i − p̄n−i+1 for 1 ≤ i ≤ n/2, we have

d2f(i)
dµ2

1
= 4v(n − 1)m

(
1 − i

(2(i − 1) + µ1m)3 + i − n

(2(n − i) + µ1m)3

)
, (A5)

where m ≡ n − 2i + 1 > 0. Both terms in parentheses are negative with the second strictly so;
f is strictly concave in µ1. Thus, Bn is a sum of functions that are strictly concave in µ1.

The term Bn is strictly positive because f(i) is strictly positive for µ1 ∈ (0, 1).

The limit properties stated in the proposition are discussed in the main text. □

Proof of Proposition 5. An equilibrium with search is stable if and only if the benefit of a second
search, Bn, cuts κ from below (Lemma 4). That can only happen if Bn is upward sloping for
some µ1 ∈ (0, 1). Because Bn is strictly positive and concave for µ1 ∈ (0, 1) with limµ1↑1 Bn = 0
(Proposition 3), if Bn is upward sloping anywhere in (0, 1), it is upward sloping when µ1 ↓ 0:

lim
µ1↓0

dBn

dµ1
> 0 = v

2
n − 1

n
(Hn−1 − 2) > 0, (A6)

where Hn−1 = ∑n−1
i=1 i−1 is the (n − 1)th harmonic number. Evaluating for n = 3 and 4 gives

H3 = 11/6 and H4 = 25/12, such that n = 5 is the first natural number to satisfy Hn−1 > 2 and
hence (A6). The function H is strictly increasing in its argument. It follows that for all n ≥ 5
the (unique) maximizer of Bn is some µ1 ∈ (0, 1) and that there is some open set of values for
Bn for which Bn is upward sloping in µ1 (the set is open because (A6) is strict). That set of
values is given by (v/n, κ∗) where κ∗ is the maximum of Bn. In other words, if κ ∈ (v/n, κ∗),
then there is a unique equilibrium with search where µ1 ∈ (0, 1) solves Bn = κ.

If n ≤ 4, Bn strictly decreases in µ1 ∈ (0, 1) and any equilibrium with search is unstable. □

Proof of Lemma 5. This follows from the argument in the main text. Janssen and Moraga-
González (2004, p. 1112) presented in a formal argument in the proof of their Lemma 1. □

Proof of Lemma 6. As described in the text, equilibrium µ1 solves (v − p̄n)/n = κ, where p̄n is
from (16) and (17). Checking the resulting µ1 ∈ (0, 1) gives the inequalities reported. □

Proof of Proposition 9. If K−1 is less steep than Bn at 0 and K−1(1) is sufficiently high, for all
n, then we know there is at least some point in (0, 1) such that K−1 = Bn.

To derive the highest relevant upper bound on K−1′(0) we find the n with the least steep Bn

as µ2 ↓ 0. The relevant calculation is

lim
µ2↓0

dB∞

dµ2
= v

3 (A7)
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For the lower bound on K−1(1), we find the Bn that is highest as µ2 ↑ 1. We calculate

lim
µ2↑1

Bn = v

n
(A8)

and so n = 2 corresponds to the lowest relevant lower bound on K−1(1). □

Proof of Proposition A1. The argument follows from the main text. One note here is that if κ

is exactly equal to the unique (by the strict concavity reported in Proposition 3) maximum of
Bn, then one can construct the argument for stability in the case of a perturbation decreasing
search away from an equilibrium, but not increasing search away from an equilibrium. Because
stability is not available in both directions, that equilibrium is unstable. □

Proof of Proposition A1. For n = 2, set κ equal to the gain from the second quotation:

κ = B2 = v − p̄2

2 = v
1 − µ1(1 − λS)
2 − µ1 + λSµ1

⇔ µ1 = v − 2κ

(v − κ)(1 − λS) , (A9)

which is in (0, 1) when the stated constraints hold. Regarding the average price charged,

p̄1 = v and p̄2 = vµ1(1 − λS)
2 − µ1 + λSµ1

= v − 2κ ⇒ p̄1 + p̄1

2 = v − κ. (A10)

For equilibrium with n = 3,

κ = B3 = p̄1 − p̄3

3 = v

3

(
2(1 − µ1) + λS(1 + 2µ1)

2 − µ1 + 3λS

)
⇔ µ1 = (v − 3κ)(2 + λS)

(2v − 3κ)(1 − λS) . (A11)

The solution for µ1 is in (0, 1) when the stated constraints hold. Substituting back into prices,

p̄1 = v, p̄2 = v(v − 3κ)(2 + λS)
(2v − 3κ)(1 − λS) , p̄3 = v − 3κ

⇒ p̄1 + p̄2 + p̄3

3 = v − κ − v(vλS + κ(1 + 2λS))
(2v − 3κ)(1 − λS) □ (A12)
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Supplementary Material for the Model with Shoppers

pr
ic

es
p̄1

p̄n(0)

p̄n(λS)

0

Number of firms, n

2 3 4 5 6 7 8 9

Figure A0. The distribution of prices with shoppers (who exogenously search
for all prices), drawn for µ2 = 3/5 and λS = 1/4. The lowest price (marked
as p̄n(λS) with points in gray) varies with the proportion of buyers who are
shoppers. All other prices (p̄i for i < n) are unaffected by shoppers (for reference
these are reproduced here, in black, along with hollow dots for p̄n(0), the lowest
price without shoppers, i.e., p̄n in Figure 1). Figure 1’s caption otherwise applies.

Proposition A1 (Equilibrium Search in a Duopoly and Triopoly). Suppose a proportion
λS ∈ (0, 1) of buyers are shoppers, while 1 − λS are searchers.37

For n = 2 and v/κ ∈ (2, 1+1/λS), there is a unique and unstable equilibrium with search where

µ2 = κ − λS(v − κ)
(v − κ)(1 − λS) ;

2∑
i=1

p̄i

2 = v − κ; av. price paid = vµ1 = v(v − 2κ)
(v − κ)(1 − λS) . (A13)

Buyers are indifferent between 0,1, or 2 searches; they earn zero expected payoff.

For n = 3 and v/κ ∈ (3, 2+1/λS), there is a unique and unstable equilibrium with search where

µ2 = 3(κ − λS(v − 2κ))
(2v − 3κ)(1 − λS) ;

3∑
i=1

p̄i

3 = v − κ − vµ2

3 ; av. price paid = v(v − 3κ)(2 + λS)
(2v − 3κ)(1 − λS) . (A14)

37The applies also for λS = 0 except that the upper bound constraint on v/κ is not there.
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