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EVOLUTION, TEAMWORK AND COLLECTIVE ACTION:
PRODUCTION TARGETS IN THE PRIVATE PROVISION
OF PUBLIC GOODS*

David P. Myatt and Chris Wallace

Collective-action problems arise when private actions generate common consequences; for example,
the private provision of a public good. This article asks: what shapes of public-good production
function work well when play evolves over time, and hence moves between equilibria? Welfare-
maximising public-good production functions yield nothing when combined efforts fall below some
threshold but otherwise maximally exploit the production-possibility frontier. They generate multi-
ple equilibria: coordinated teamwork is integral to successful collective actions. Optimal thresholds
correspond to the output that individuals who pay all private costs but enjoy only private benefits
would be just willing to provide.

1. Public-good Production and Collective Action

A classic collective-action problem arises when private actions lead to common con-
sequences. Examples include the private provision of a public good or the private
exploitation of a common resource. For the former case, the central issue addressed is
this: what types of public-good production technology are conducive to the success of a
collective action?

More concretely, a general game is considered in which a player’s payoff is the sum of
a private component, specific to the individual and depending only on that player’s
action, and a public component, common to all players and depending on all actions.
This distinction follows the tradition established by Olson (1968), for whom a collective
action was defined by the separation of individual and common interests. It is also
related to the notion of teamwork employed by Marschak (1955, p. 128), who defined a
team as

[...Jagroup of persons each of whom takes decisions about something different
but who receive a common reward as the joint result of all those decisions.

The public component of payoffs corresponds to a public-good production function.
Given a family of such functions, the member that leads to the highest welfare is
sought. A ‘long-run’ welfare measure is employed, since play evolves according to a
strategy-revision process.

Of particular interest is the shape of public-good production functions. For example,
consider a ‘Cournot contributions’ game (Shibata, 1971; Warr, 1983; Bergstrom et al.,

* The authors thank editors, anonymous referees and colleagues, particularly Ken Binmore, Larry
Samuelson and Peyton Young, as well as seminar participants in Bristol, Copenhagen, Oxford and Helsinki
for their comments and advice. Somewhat confusingly, earlier versions of this article were circulated under
the titles ‘Production Targets and Free Disposal in the Private Provision of Public Goods’ and ‘An Evolutionary
Justification for Thresholds in Collective Action Problems.” This article was submitted before David Myatt was
invited to become an editor of this JOURNAL.
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1986, 1992) in which public-good output is a concave function of the contributions
made simultaneously by players. Such a game typically has a unique Nash equilibrium,
and provision falls short of the social optimum. Next, consider a production function
for which output is zero unless players’ contributions reach a critical threshold (Palfrey
and Rosenthal, 1984). If individual players are unable or unwilling to provide the
threshold level of contribution unilaterally, then there is a Nash equilibrium in which
output is zero. On the other hand, there can also be an equilibrium in which a team of
players jointly share the burden of provision. A contributing team member bears only a
moderate cost but enjoys the full non-excludable benefit of provision; dropping out
causes production to collapse, and so each player is pivotal to the success of the col-
lective action. This ‘good’ equilibrium could involve a higher level of public-good
provision than that achieved with a concave production function. However, there is the
risk that the ‘bad’ equilibrium is played.

To illustrate, consider the academic committees that will be familiar to many
readers. Voluntary attendance involves a private cost and (arguably) generates a
public benefit; alas, free riding may lead to sub-optimal attendance.' Of course, many
committees employ quora. A quorum is a production target: a collective action (the
committee’s decision) goes ahead only if a threshold (the quorum) is reached. The
quorum generates a particular non-concave public-good production function, where
output from a sub-quorate committee is zero. This is technologically inefficient, since
output is effectively discarded (decisions are put on hold) when the collective inputs
fall below the threshold. Nevertheless, the use of a quorum might be seen as a
response to a classic moral-hazard-in-teams problem: by setting the threshold equal to
the socially optimal level of participation, a social planner makes each attendee
pivotal to the collective action. However, this may also create an equilibrium in which
nobody attends the meeting. Unless society can choose which equilibrium is played,
the outcome is indeterminate, and welfare may be higher or lower than in a world
without a quorum.

As a second illustration, consider an environment without a social planner so that
incentives cannot be imposed arbitrarily: the voluntary provision of open-source soft-
ware. Certain open-source activities, such as bug-fixing, can be conducted individually,
and their success does not depend upon the actions of others.” The creation of com-
plex software, however, involves specialisation; the entire system works only if all team
members pull their weight.” The need for teamwork generates a collective-action game
with ‘good’” and ‘bad’ equilibria; this scenario bears a striking semblance to that of a
quorum-constrained committee.

Moving beyond the examples considered above, an assessment of threshold effects is
a special case of the general question addressed by the article: which public-good
production technologies work well? Thresholds, production targets, or quora are not
imposed; rather, these features appear naturally from a welfare ordering of public-good
production technologies.

! (,onversely, too many cooks might spoil the broth; over-attendance is also addressed within this article.
? Johnson (2002) modelled open-source software provision as a voluntary-action game, while Myatt and
Walldce (2008a) used an evolutionary analysis of the volunteer’s dilemma to identify the likely providers.
? Studies based on data from the sourceforge.net collaborative development environment (Giuri et al.,
2006) have observed that teamwork is fundamental to the open-source model.
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Three observations emerge from these introductory remarks. First, to ascertain
welfare performance it is necessary to determine which actions will be taken: in the
examples above, the Nash solution concept does not always yield a unique prediction of
play in a one-shot game. Second, inferior technologies which do not fully exploit the
boundaries of the production-possibility frontier (in the case of a sub-quorate com-
mittee, some output is effectively thrown away) might well yield higher welfare by
encouraging teamwork. Third, some of these production technologies involve a
threshold rule: output is zero unless the inputs rise above a critical level. These three
observations lead to three questions. Which strategy profiles (a voluntary contribution
from each individual) will be played and how often? To what extent is the use of
technologically inefficient production processes socially desirable? Finally, if a thresh-
old (such as a quorum) could be imposed upon an otherwise standard production
function, then at what level should this threshold be set?

An answer to the first question stems from the study of a strategy-revision process
via which play evolves. At each point in time a randomly selected player enjoys a
strategy-revision opportunity and chooses a quantal response (a ‘smoothed’ best
reply) to the contemporary decisions of others.* The analysis of this process leads to
a unique characterisation of play via a probability distribution over strategy profiles
(inputs to production) which reflects the frequency with which each is played in the
long run. This (ergodic) distribution takes a simple form since the collective-action
game considered here is a potential game (Monderer and Shapley, 1996): a game in
which players act as though they are jointly maximising a single real-valued function
(a potential function) of their combined actions.” The potential is the private
benefit enjoyed by a single individual minus the sum of all private costs. Under the
strategy-revision process considered here, the long-run log likelihood of a strategy
profile (and so the corresponding public-good provision) is proportional to its
potential.

Turning to the second question, a family of feasible public-good production func-
tions is considered. As an example, suppose that feasibility is determined by a pro-
duction-possibility frontier: a function G(z) where z represents the players’ combined
inputs. (Equivalently, z is a strategy profile from the collective-action game.) A feasible
production function G(z) satisfies 0 < G(z) < G(z). Given this family, the welfare-
maximising member is sought, where aggregate welfare is the long-run average of the
sum of the players’ payoffs. The article’s analysis reveals that the optimal production
function attains the frontier (G(z) = G(z)) for some input combinations, and gener-
ates nothing (G(z) = 0) for others; however, it never takes intermediate values, so that
0 < G(z) < G(z) is ruled out.

To see why, notice that a reduction in G(z) has two effects. Firstly, it directly lowers
welfare whenever z is played. Secondly, it makes z less attractive (formally, it reduces
its potential) and so other strategy profiles are played more often. If these other

* Specifically, players update according to a multinomial-logit choice rule (McKelvey and Palfrey, 1995).
These choices may be generated by an underlying random-utility model, or may be viewed as ‘smoothed’
best-replies. Blume (1993, 1995, 1997, 2003), Blume and Durlauf (2001, 2003), Brock and Durlauf (2001)
and Young (1998, 2001) have employed this choice rule in a variety of models.

5 More precisely, the game considered here is an exact potential game (Monderer and Shapley, 1996). The
elegant Gibbs representation of the ergodic distribution for such games was noted by Blume (1997).
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profiles yield higher welfare, then the aggregate impact (direct and indirect) of the
two effects might be to enhance welfare. If this is so, then any further reduction of
production also must be (in the aggregate) welfare enhancing: the negative direct
effect is less severe since z is played less frequently. Continuing this argument, if it is
welfare-increasing to reduce G(z) then it is optimal to reduce it all the way to zero;
similarly, if it is optimal to increase G(z) then it is optimal to raise it all the way to the
upper bound G(z).

A direct conclusion is that welfare-maximising production functions exhibit dis-
continuous steps and so lack the concavity of traditional textbook specifications. This
further implies that the associated collective-action games tend to exhibit multiple
equilibria; teamwork (coordination on ‘good’ equilibria) is a necessary component of a
successful collective action.

The answer to the third and final question is that an optimally shaped public-good
production function implements a welfare-based threshold rule. This rule is easiest to
describe when the evolution of play approximates a best-reply process; that is, when the
noise associated with quantal-response strategy revisions is small. Using the notation
developed above, the optimal production function satisfies G(z) = G(z) if and only if
the welfare generated by the play of z exceeds a critical target. This target threshold
may be calculated via the following two-step procedure. First, consider the input
combinations for which an individual’s private benefit from public-good production
G(z) exceeds the total private cost. (In the language of potential games, these are the
strategy profiles for which the potential is non-negative.) These production plans are
interpreted as privately feasible, in the sense that a private operation, by someone who
bears all private costs but cannot capture non-excludable spillovers, would generate
positive profits. Second, calculate the maximum welfare achieved by maximising across
the set of privately feasible input combinations: this maximum is the critical welfare
target. This welfare threshold typically falls short of the social optimum. Were a higher
threshold to be chosen, however, the process would languish in a state of low pro-
duction for much of the time. Setting a lower target, whilst less ambitious, helps the
process to spend more time in ‘team success’ rather than ‘team failure’ states of play.

In some circumstances the optimal public-good production function can be char-
acterised more simply. If the input to production is the simple sum of players’ con-
tributions and the production possibility frontier is sufficiently concave then the
socially optimal production function couples a contribution target (a minimum
threshold) with a contribution cap (a maximum). That is, fully efficient public-good
production goes ahead if and only if total contributions fall within a specified interval.
The contribution target typically falls below the socially optimal level of provision. In
the context of the academic committees mentioned above, this contribution target
corresponds precisely to the use of a quorum.

The remainder of the article is organised as follows. Section 2 studies a pair of
worked examples which serve to motivate the questions asked by the article and illus-
trate the methods used to answer them. The class of collection-action games and the
process via which play evolves are both described in Section 3. Section 4 contains the
central results: Proposition 1 shows that an optimal public-good production function
either makes full use of the feasible technology or produces nothing, while Proposition
2 calculates the welfare-based threshold rule that determines when production
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opportunities should be thrown away. Section 5 applies the results to a class of Cournot-
contribution games: Proposition 3 demonstrates the optimal combination of a con-
tribution target and cap. Section 6 relates the results to earlier literature, drawing
particular connections with sociological theories of critical mass.

2. Two Simple Worked Examples

This Section presents two simple worked examples. The first motivates the key ques-
tions of the article, while the second illustrates the methodology used to answer these
questions.

2.1. A Simple Cournot-contributions Game

Consider a game in which n symmetric players simultaneously and voluntarily con-
tribute toward the production of a public good. Player i contributes z; and so incurs a
private cost ¢(z). The contributions yield a public good of value F(Z) where
Z = ", z. The non-excludable public good is enjoyed equally by everyone and so

j -
player i seeks to maximise F(Z) — ¢(z;). Given the convexity of ¢(-) and concavity of

F(-), together with a few technical assumptions, there is a unique pure-strategy Nash
equilibrium. This equalises (private) marginal cost and (private) marginal benefit.
Alas, production falls short of the social optimum: ideally players would contribute
more.

Now consider a second production function Fg(-) which abandons the concavity
associated with F(-): suppose that Fi(") yields the same output as F(-) if and only if total

contributions exceed some threshold K, and otherwise yields nothing (Figure 1):

Fo(7) = {F(Z) if Z>K, or
1o otherwise.

Fx () is (trivially) non-concave and is less productive than F(-). Nevertheless, it can
enhance performance by encouraging teamwork. To see this, suppose that K exceeds
the total Nash contribution under F(-) and satisfies ¢(K) > F(K) > ¢(K/n). Under
I'k(-) there is a Nash equilibrium in which each player contributes K/n. Successful

Public-Good Output
\

Total Contributions Z = jr-’:l zj

Fig. 1. A Production Function with a Threshold
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production depends pivotally on each player; the inequality F(K) > ¢(K/n) ensures
that team members do not deviate.® However, a player contributes if and only if others
do so; the inequality ¢(K) > F(K) ensures that it is unprofitable to be the sole
contributor, and so there is an equilibrium involving no contributions.” So, a
coordination problem arises: while the threshold in Fg(:) could lead to greater
contributions, it might also lead to the collapse of production. A proper welfare
comparison of F(-) and Fx(*) needs to address an equilibrium-selection problem.

The comparison of F(-) and Fx(") is closely related to a hypothetical social-planning
problem. Given the production function F(-), a benevolent planner might wish to
impose the socially optimal contributions. However, suppose that players cannot be
coerced but instead the planner is only able to exploit a free disposal opportunity by
throwing away output. One possibility would be to discard contributions which fall
below K: the idea is to force players to work together as a coordinated team. Indeed, the
planner might consider equating K to the socially optimal aggregate contribution.®
But, as the target K becomes more ambitious, it may become difficult for players to
successfully coordinate on the ‘good’ equilibrium.

To explore the equilibrium-selection problem further, consider a simple two-player
scenario. The ‘team success’ and ‘team failure’ equilibria correspond to z; = 2z = K/2
and z; = 2z = 0, respectively. This scenario can be thought of as a 2 x 2 coordination
game (Figure 2).°

One equilibrium-selection criterion is risk dominance (Harsanyi and Selten, 1988). In
a symmetric 2 X 2 game, the risk-dominant equilibrium involves pure strategies which
are best replies given the belief that opposing actions are equally likely; heuristically, a
risk-dominant equilibrium is relatively safe. So, if Player 1 believes that z = K/2 and
zo = 0 are equally likely, then an inspection of Figure 2 confirms that z; = K/2 is a strict
best reply if and only if H(K)/2 > ¢(K/2). Equivalently, the ‘team success’ equilibrium is
risk dominant if and only if F(K) > 2¢(K/2). This says that the individual private (not
social) benefit from attaining the threshold exceeds the total private cost. With n
players, the analogous condition would be F(K) > nc(K/n). In the context of a
production target, this condition is not necessarily satisfied when Kis set at the socially
efficient level. Thus, for the hypothetical social-planning problem described earlier, a
planner might temper ambition with realism by setting K such that this condition is met
(Figure 3).

Amongst the justifications for the use of risk dominance as an equilibrium-selection
criterion: two are described here. When rational players lack common knowledge of
the payoffs, Carlsson and Van Damme (1993) showed that the risk-dominant strategy
profile of a 2 x 2 game is almost always played. Kandori et al. (1993) and Young (1993)

% Since K already exceeds the original Nash aggregate contribution, no player will push beyond the
threshold.

7 In addition to these two symmetric equilibria, an asymmetric pure strategy profile is an equilibrium if it
satisfies Z= K, I'(K) < ¢(z) and F(K) > ¢(z) for all i. If F(K) < ¢(K/n) then the unique equilibrium
involves no contributions, whereas if F(K) > ¢(K) then all equilibria satisfy Z > K.

8 This corresponds to the principal-driven solution to the moral-hazard-in-teams problem (Holmstrom,
1982).

9 Clearly, a player may choose a contribution other than the two highlighted here. There is no further
insight to be gained by including these and, furthermore, no such restriction is made in the remainder of the

paper.
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Fig. 2. Multiple Equilibria in a 2 x 2 Collective-Action Game
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Fig. 3. Feasible Thresholds
Note: This Figure illustrates the conjectured equilibrium-selection constraint. Z* is the
aggregate Nash contribution under the production function F(-). Turning to the produc-
tion function Fk(-), for thresholds K > Z*, there can be an equilibrium where the players
jointly contribute K toward the public good. However, if K > K where IF(K) = nc(K/n) the
discussion of Section 2.1 suggests that play will switch to the ‘team failure’ equilibrium, and
so overly ambitious thresholds are self-defeating.

took a very different approach, in which play evolves via a stochastic strategy-revision
process. Boundedly rational players adapt myopically to recent play, and their actions
are subject to noise. When noise is small, and in the long run, play almost always
corresponds to the risk-dominant equilibrium of a 2 x 2 coordination game.

Equilibrium selection, while suggestive, is not the sole focus of this article. Rather
than specifying a precise selection criterion, this article instead admits that behaviour
may vary over time, and so play may move between equilibria. The appropriate
solution concept, then, is a non-degenerate probability distribution over the differ-
ent strategy profiles (equivalently, combinations of inputs to the production) which
represents the long-run frequency of different modes of play. Such a probability
distribution emerges from the analysis of a strategy-revision process. In the context
of such a process the switch between production functions from F(-) to Fx(-) has two
effects. First, it reduces welfare whenever contributions amount to less than K
Second, it influences the evolution of play and so changes the frequencies with
which strategy profiles are played. The next worked example explores this idea
further.

© The Author(s). Journal compilation © Royal Economic Society 2009



68 THE ECONOMIC JOURNAL [JANUARY
2.2. Fvolving Play and the Shape of the Production Function

This example (a special case of the collective-action game considered previously)
illustrates the methodology used to tackle the questions arising from Section 2.1, and
helps to build intuition for the answers. Two players each choose either to contribute to
a public good (z; = 1) or to free ride (z; = 0). A contributor incurs a private cost of
¢ > 0, and so ¢(z;) = ¢z

Turning to the production technology, when both players contribute (Z = 2) the
public good has value Fy(2) = vy to both players. A single contribution (Z= 1) re-
duces its value to (1) = 0v;, where v;, < vy and where 0 < 0 < 1. If neither player
contributes (Z = 0) then nothing is produced, so that f(0) = 0. Summarising, the
production function satisfies

g if Z=2,
Fy(Z) = {HUL if Z=1, and

0 if Z=0.
Crucially, the parameter 0 € [0,1] can be varied, and so it indexes a family of feasible
production functions (Figure 4). Setting 0 =1 pushes Fy(1) against the frontier
F(1) = vz, whereas setting 0 = 0 is equivalent to specifying a threshold of K = 2. This
game can be simply represented as a 2 x 2 strategic form (Figure 5). To make it
interesting, assume that

UL>C>'UH—UL>C/2>O.

These inequalities ensure that, for 0 = 1: the private benefit of the first contribution
exceeds its private cost; the private benefit of the second contribution falls short of its
private cost; but it is socially optimal for both players to contribute. For 0 sufficiently
large (that is, when 0 > (vy — ¢)/v;) there are pure-strategy Nash equilibria in which
only one player contributes. For smaller 0, however, there is one equilibrium in which
both players contribute and another in which neither do so. For either case there are
multiple equilibria, and hence the Nash solution concept cannot provide a unique
prediction. To address this problem, serious heed is paid to the twin possibilities that
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Fig. 4. A Family of Production Functions
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Fig. 5. Equilibria and Welfare in a Collective-Action Game

the game is played frequently and that the players adopt different strategies at different
times.

Concretely, play evolves via the following strategy-revision process. At (discrete) time
t, the state of play 2’ is the strategy profile in use, and so the state space is simply the
collection of the possible profiles: (0,0), (1,0), (0,1) and (1,1). A randomly chosen
player enjoys a strategy-revision opportunity, and plays a quantal response (McKelvey
and Palfrey, 1995) to contemporary play. For example, suppose that Player 2 is
currently contributing whilst Player 1 free rides, so that 2= (0,1). Player 1 is given the
opportunity to revise. By choosing to contribute, Player 1 enjoys a payoff v;; — ¢. On the
other hand not contributing will yield 0v;. A logit quantal-response means that, rather
than choosing a best reply, the log odds ratio of player 1 choosing to contribute versus
not is linear in the payoff difference between the two actions. That is,

Pr(Contribute)

Ogm = /L("UH — 0"()[4 — L‘). (1)

Similarly, beginning from the state of play (0,0) in which neither player contributes,
this log odds ratio is (v, — ¢). The parameter A indexes the degree to which this is a
model of ‘smoothed’ best replies. If 2 = 0 then a revising player chooses at random
whereas when 4 — oo the quantal response is almost always a myopic best reply. As with
econometric models of discrete choice, the logit quantal-response admits a random-
utility interpretation.'”

This strategy-revision process is a simple Markov chain. Using expressions such as (1)
transition probabilities p, ., = Pr(z =2 | 2/ = z) are easily calculated. This process
is ergodic; that is, its long-run behaviour is independent of initial conditions. This
means that the long-run frequency n, = lim, .., Pr(z' = z) with which each strategy
profile is played (this is the ergodic distribution of the Markov chain) is uniquely
defined.

Calculating the long-run strategy frequencies is relatively simple, as ‘detailed-
balance conditions’ apply: the relative likelihood of two different strategy profiles
(and hence input combinations) is determined by the relative likelihood of directly
jumping back and forth between them. That is, n,p, ., = nyp,_, for all z and 7. For

1% Suppose that a revising player’s payoffs are subject to noise: the payoff difference between the two
available actions is logistically distributed with parameter A. This yields Equation (1).
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example, taking the transition from (0,1) to (1,1) discussed previously, and its
complement,

T Po1-11 — oHMon—0u—0)
Tor  pPri—ol

Using these detailed-balance conditions, it is straightforward to find the ergodic dis-
tribution. The long-run probabilities associated with the various strategy profiles,

Mog—2¢)
)

Ty X e~ Ovr—c)

T10 = o1 X eA( and Top X CO = 1,

depend on the gap between the private benefit to a single player and the total private
cost.

With the properties of long-run play established, attention can turn to social welfare.
Defining welfare as the sum of players’ payoffs and using an obvious notation,

wip =2(vg —¢), wo=wy =20vu, —c¢ and wy = 0.

An appropriate measure of aggregate expected welfare requires a probability distri-
bution over the set of strategy profiles. The distribution derived above yields the welfare
measure

2(201)L _ C)ei(()vL—c) 4 Q(UH _ C)ei(vH—Qc)
9eiOuL—c) 4 eA(vn—2¢) 4 ] ’

W,(0) = anwz = (2)
Welfare depends upon the production function in use (determined by 0) and the level
of noise in the quantal responses (determined by A). The search for the welfare-
maximising public-good production function reduces to an examination of how W, (0)
responds to changes in 0. Such changes feed through both the welfare terms w, and the
probabilities ..

Consider a reduction in 6. This has two effects: it reduces the welfare of states (0,1)
and (1,0); but it also reduces the likelihood of these states and so increases the relative
likelihood of the state (1,1) in which welfare is maximised. Suppose the welfare gain
from the latter effect is larger than the loss from the former. Then an additional
reduction in 0 increases aggregate expected welfare further: the states (0,1) and (1,0)
in which welfare is lowered are played less frequently (as a result of the first decrease
in 0) and so the negative impact is smaller than before and must again be outweighed
by the gain from the increased frequency of (1,1) play. Thus, if it is beneficial to lower 0
a little, it will be optimal to lower it maximally. Similarly, if it is beneficial to raise 0 a
little, it is optimal to raise it maximally.

This argument (or rather a formal version of it) establishes that welfare is maxim-
ised by setting either 0 =1 or 0 = 0. These two options respectively correspond to
the maximal exploitation of production opportunities, or the use of a threshold rule
(at K= 2) in which all inputs falling below K produce no output. So which option is
best?

Later Sections provide a complete answer to this question. Here, however, it is
instructive to examine what happens when 4/ is large, so that quantal responses closely
approximate myopic best replies. An inspection of (2) reveals that W)(1) — 2v; — cas
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Fig. 6. Quasi-Convexity of Welfare in 0

Note: This Figure illustrates the quasi-convexity of social welfare W,(0) in 0 for various
parameter values. The specification of Figures 4 and 5 is used with vy =12 and v, = 8.
When noise is high (4= 0.5) then welfare is maximised by choosing 0 =1 for each
value of ¢ displayed; production possibilities should be exploited maximally. However, when
A is larger, so that strategy revisions are closer approximations to myopic best replies, it is
optimal to set 0 = 0 and move to a threshold-based production function, so long as ¢ is
small enough.

A — 00, so that the process spends almost all time in the states (0,1) and (1,0). How-
ever,

2ug — ¢ if vy > 2¢, and
Wi0) = {o if vy < 2.

If vy > 2¢ then society can gain by using an inefficient technology (6 = 0) which
throws away output by imposing the threshold K = 2. The inequality vy > 2¢ has the
‘private feasibility’ interpretation (Section 2.1): vy is the benefit of the full (Z = 2)
public good to a single player whereas 2¢ is the total private cost of provision. In
contrast, when vy < 2¢ (so that Z = 2 is privately infeasible) welfare is optimised by
fully exploiting the production-possibility frontier: if 0 = 0 the ‘bad’ equilibrium is
played almost all of the time.

The conclusion here is that in the limit (as 4 — o0) a threshold is socially optimal so
long as ¢ is small enough. This is true generally: there is a cut-off level of the contrib-
ution cost ¢, such that for all ¢ higher than this it is optimal to exploit production
opportunities maximally, and for all ¢ lower it is optimal to introduce a threshold.
Figure 7 illustrates.

2.3. Some Preliminary Conclusions

The example of Section 2.1 illustrates the motives for generating a coordination
problem (where previously none existed) when attempting to improve social welfare in
the classic private-provision-of-a-public-good setting. By using a ‘dented’ production
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mid
VL

Fig. 7. The Cut-Off Values ¢* (1) . _
Note: The Figure plots ¢; for three different values of v;, where vL"gh > yiid > glow. Note
that ¢, — vy /2 as A — oo. Beneath the curve it is socially optimal to set § = 0, but above it
is socially optimal to set 0 = 1. As v, — vy, the former region disappears.

function, the social optimum may become a ‘team success’ equilibrium of the game;
however, another ‘team failure’ equilibrium might arise where no provision takes place
at all. As a result, if generating such a coordination problem is indeed warranted, it must
be the case that the ‘good’ equilibrium is played: else it would be better to use a tradi-
tional concave production function which attains the production-possibility frontier.

Should an optimal production function exhibit the ‘all or nothing’ characteristics of
a threshold rule? Section 2.2 provides a preliminary answer. A quantal-response process
generates long-run probabilities for the play of each strategy profile, which generate an
aggregate social welfare measure. For the relevant input combinations, it is socially
optimal either to exploit fully the production-possibility frontier function, or to throw
everything away.

3. The Evolution of Public-good Production

This Section presents an analytical framework within which the insights of Section 2
prove to be quite general. First, a general collective-action game is used to model the
private provision of a public good. Second, a quantal-response strategy-revision process
is described via which play evolves. Finally, long-run play is characterised.

3.1. A General Collective-Action Game

Consider an n-player simultaneous-move game in which player i chooses an action z;
from the finite set Z; This action is interpreted as the player’s contribution to the
production of a public good, or participation in some other collective action. It gen-
erates a private cost ¢;(z;) : Z; — R. This cost is independent of other players’ actions,
and hence captures the individual interests of player q.

The actions of the n players together form a pure strategy profile z € Z = x,;Z;which
represents the combination of inputs that feed into the public-good production
process. These inputs generate a public-good output of G(z) : Z — R. This (pure)
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public good is enjoyed equally by all players, and hence G(z) captures players’ common
interests.
Combining these elements, a collective-action game is obtained if the payoffs satisfy

ui(z) = G(z) — () (3)

for each player i. No structure is imposed on either the production technology or the
cost functions. The key assumptions are first that payoffs are additively separable, and
second that players value the public good identically. These assumptions are needed in
order to generate a potential game. In a related paper, Myatt and Wallace (20080),
progress is made without these assumptions. Instead, that paper focuses on binary-
action games. Here there are no restrictions placed upon the strategy space but payoffs
must take the form in (3).

It may be that some individuals enjoy contributing to the public good. Similarly, G(z)
may represent a public bad (such as pollution) rather than a good. Thus the for-
mulation of (3) goes beyond Cournot-contribution games and incorporates many other
scenarios, including the private exploitation of a common resource."’

A collective-action game satisfying (3) proves easy to analyse since it is an exact
potential game (Monderer and Shapley, 1996). Such a game admits an exact potential
function Y(z) : Z — R. This is a real-valued function defined on the space of strategy
profiles which captures the essential strategic properties of a game: whenever a player
deviates, the change in the potential function is precisely equal to the change in the
player’s payoff. More formally, if two strategy profiles z and Z differ only by the action
taken by player i, then u,(7) — u,(z) = ¥ (¢) — Y(z). Roughly speaking, the players of a
potential game act as if they are jointly attempting to maximise the potential function.
Here, the separation of the players’ payoffs into public and private components yields
an exact potential function

n

Y(z) = G(x) = ) cilz). (4)
i=1
¥ (z) incorporates a single player’s private benefit from the public good minus the total
private cost of provision. This contrasts with a natural social-welfare function

n

w(z) = nG(z) = > ai(x) (5)

i=1

which incorporates the social benefits of nG(z) accruing to the entire set of players.
Given the discussion above, the Nash equilibria of a potential game are associated
with the maximisation of the potential function. Two subsets of Z are of interest. First,
Z' is the set of strategy profiles from which no player can unilaterally deviate and
increase the potential. Since a change in a player’s payoff following a deviation corres-
ponds one-to-one with a change in potential, Z is also the set of pure-strategy Nash
equilibria. Second, Z* is the set of strategy profiles from which players cannot jointly
deviate and increase the potential. These form a subset of the (pure-strategy) Nash

' Cournot-contributions games often involve continuous action sets and hence to place them within the
present framework simply requires the construction of a sufficiently fine grid of feasible contributions.
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equilibria. Since ZFis non-empty, a potential game has at least one pure-strategy Nash
equilibrium.'?

For a collective-action game, a member of Z' = argmax.c;[G(z) — Y1, ¢i(z)] has
the following interpretation. Suppose that a private entrepreneur were to hire the
players (contributors to public-good production) and pay for their costs. Clearly, the
entrepreneur’s costs would be >"" , ¢;(z;). The entrepreneur would then sell the public
good. Since it is non-excludable, this sale would extract only a single private benefit
G(z) of provision as revenue, yielding profits of Y/(z) = G(z) — >.I; ¢i(z). Maximising
profits, the entrepreneur would choose z € Z*. That is, Z% is the set of privately profit
maximising input combinations. This set also has relevance for the evolving play of the
game.

3.2. Fvolving Play

A standard approach to the analysis would be to consider the Nash equilibria in Z'.
However, this approach has weaknesses. Collective-action games often have multiple
equilibria and so equilibrium-selection problems arise. Furthermore, a consideration of
long-run behaviour must admit the possibility that play may change over time.

Here, play evolves according to a strategy-revision process. At each discrete time a
player ¢ is drawn at random (with probability ¢; > 0) and given a strategy-revision
opportunity. One possibility would be for a revising player to choose a myopic
best reply to the current strategy profile. The long-run behaviour described by such
a process is potentially history-dependent, since it will ‘lock in’ to a strict Nash
equilibrium (of which there may be many).

To circumvent this problem, noise is required. This might be generated in a variety
of ways, so long as play can move away from every strategy profile with some positive
(but possibly small) probability. Here this is achieved through a logit quantal-response
specification: strategy revisions follow a familiar multinomial-logit distribution
(McFadden, 1974)."® Somewhat more formally, write 2’ for the state of play (a strategy
profile, or combination of inputs) at time ¢, and p, .y = Pr(z‘+l = z’\zt = z) for the
transition probability of moving from z to 7. If states of play 7 and z differ only by the
action of player ¢ then

etul?) ©)
Pz = Qi X Ty
ZZ”EAi(Z) etul®)
where A,(z) are strategy profiles that differ from z by at most the action of player i. The
parameter / indexes the degree to which the quantal response is a smoothed best reply
to the play of others: if A =0 then a revising player chooses at random (that is,
equiprobably), whereas in the limit as 4 — oo a revising player almost always chooses a
best reply.

2 More formally, Z* = {z€ Z|y(2) > y()VZ € 2} D Z = {z€ Z| Y(2) > Y ().¥Z € A(2)}, where
A(z) is the set of ‘neighbouring’ strategy profiles obtained via a single-player deviation from z.

> This has the usual random-utility interpretation: if payoffs are subject to identically and independently
distributed Gumbel shocks with scale parameter A, then the multinomial logit is obtained.
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Logit quantal-response strategy revisions are easy to work with when applied to an
exact potential game. Taking two states of play z and 7 that differ only by the action of
player i,

log <,);) — ) — u(2) = () - y()] (7)

7 —z

The second equality follows since (-) is an exact potential function. Equation (7) says
that the relative probability of jumping back and forth between neighbours is
determined by the difference in potential and not by player 7s payoff from actions
other than z; or z}; this reflects the independence-of-irrelevant-alternatives property of
the multinomial logit."*

Alternative noise specifications are not amenable to the analysis presented here.
However, progress can be made with a variety of distributional forms (including the
probit) for vanishingly small noise. Such limiting results are exactly the focus of Myatt
and Wallace (20085), which studies the evolving play of various Palfrey and Rosenthal
(1984) threshold games. Analytical results are available when attention is restricted to
either binary-action games under general noise specifications with vanishingly small
noise, or potential games with completely general strategy spaces under the logit with
any level of noise. This paper studies the latter, whilst the former is analysed in Myatt
and Wallace (2008b): the results are complementary.

A variant of (7) holds for sequences of transitions. For example, a two-step transition
in which the process moves from z to 7’ via an intermediate state 7 satisfies

pes X pu ,
10g<w> = A (") = (2)].
This means that the relative probability of following a path between two states versus
following the reverse path depends only upon the difference in potential at the start
and end of the path: the exact route taken does not matter. This key property, which
stems in turn from the use of an exact potential game, allows an easy characterisation of
long-run behaviour.

3.3. Long-run Behaviour

The strategy-revision process described above is an ergodic Markov chain on the state
space Z of strategy profiles. What this means is that the long run frequencies
7, = lim, .., Pr(z'=z) with which strategy profiles are played (these form the ergodic
distribution) are uniquely defined and independent of initial conditions. Following
Blume (1997), the ergodic distribution takes a simple Gibbs representation.15

* This property is somewhat restrictive: assuming independence of payoff shocks rules out payoff corre-
lation. This is a common critique of the multinomial logit as an econometric model (Hausman and
McFadden, 1984). An alternative allowing for correlation is the multinomial probit (Hausman and Wise,
1978). Unfortunately, closed-form solutions for the general class of public-good provision games examined
here are not available.

% Blume (1997) discussed the relationship between potential games and log-linear choice rules. He ob-
served that detailed-balance conditions are satisfied if and only if the game admits an exact potential function.
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LemMaA 1. Consider an n-player strategic-form game that admits an exact potential (). If
play evolves by multinomial-logit quantal-response then the ergodic distribution satisfies

' t )

The long-run log likelihood-ratio of states is determined by the potential difference.

Heuristically, at least, this says that the long-run frequency of each strategy profile is
determined by the private profitability of the corresponding input combination.

Lemma 1 is straightforward to prove. A probability distribution =, is said to be in
‘detailed balance’ with respect to two states of a Markov chain if n,p, ., = nyp,s_.,. This
says that the average flow out from z to 7 is equal to the average flow in from 7 to z.
Combining (7) and (8) it is easy to see that this detailed-balance condition holds
whenever two states differ by a single action. For z = 7, the condition holds trivially
and for any other pairs the transition probabilities are zero, so the condition holds
once again. If a distribution is in detailed balance with respect to all pairs of states of
an ergodic Markov chain, then it is the unique ergodic distribution (Grimmett and
Stirzaker, 2001, p. 238).

The Section draws to a close with the observation that, as 4 — oo, all weight falls
on the states with maximum potential: lim, . [lim, .. Pr(z € 791 = 1. That is,
when noise is small, these strategy profiles (the potential-maximising Nash equilib-
ria) are ‘selected’. In the collective-action game of interest, these equilibria maximise
the difference between the private value of public-good production to an individual,
G() and the total private cost of provision. That is, the equilibria selected corre-
spond to the ‘entrepreneurial’ ones that would be chosen were a private individual
to bear the total costs of production by compensating every player for their cost of
contribution.

4. Social Welfare and Coordination

This Section contains the central results of the article. Social welfare is considered and
the reaction of the welfare criterion to parameter changes is ascertained: when a
parameter shifts public-good output across a set of states of play it is optimal either to
maximise or to minimise output; intermediate values should not be chosen.

4.1. Social Welfare

Given the play of a strategy profile za natural welfare measure is the sum w(z) of payoffs
defined in (5). If z were always played then w(z) could be a sufficient measure. How-
ever, play evolves; in the long run, zis played with probability 7, (Lemma 1), and so the
long-run time-average of welfare is

H(2) "
W= Zn’zw(z) = Z {Z

SR w(z)| where Y(z) = G(z) — Z ci(z), (9)
2€2 262

JeZ i—1
and where
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n

w(z) = nG(z) — Z ci(z). (10)

=1
This is the welfare criterion that is used in the remainder of the article. Note, however,
that there are other welfare measures that could be employed. One candidate is the
present-discounted value of w(z). Given a discount factor ¢, in per-period terms this

satisfies
1 o0

W = mz o' [ZZGZ Pr(z' = 2) x w(z)} .

=0

Of course, the probabilities in this expression depend upon the initial conditions of
the process. Two ways of resolving this problem are these: first, placing the
distribution 7, across the initial states of play yields E(Ws) = W. Second, for any
initial conditions Wy — Was 6 — 1. Hence W can be interpreted as the objective of
either

(2) a social planner who is uncertain of initial conditions and uses the ergodic
distribution to capture this uncertainty; or
() a patient social planner.

More generally, all of the results hold for the welfare measure Wj, so long as ¢ is large
enough. W is less appropriate as a welfare measure when the hypothetical social
planner is impatient and / is very large. When there is very little noise then the short-
run properties of the strategy-revision process are determined by initial conditions, and
so welfare depends heavily upon the initial state of play.

4.2. Influencing Production

Attention now turns to the construction of a welfare ordering over a family of
public-good production functions. Notice that the production function G(z) influ-
ences aggregate welfare in two ways. First, G(z) directly affects welfare w(z) whenever
z is played. Secondly, G(z) determines the potential (z), and hence the relative
likelihood that the process visits state-of-play z. These effects must be considered
jointly.

To make progress, suppose that a parameter 0 € [0,1] affects production.
(Restricting the support to 0 € [0,1] is without loss of generality.) The common
component to payoffs becomes Gy(z); similarly, welfare and potential become wy(z) and
Wo(z) respectively. Assume that Gy(z) is strictly increasing (this is without loss of gen-
erality) and twice continuously differentiable in 0 for all z. Define the states of play for
which 0 has an effect as Z,.

DEFINITION. 0 is an output shifter if it affects Gy(z) in the same way for all states in Zy.
More formally, this definition is satisfied if Gy(z) — Gy(7) is constant with respect to 0
for all pairs z and 7 in Zy; this is automatically true when Zj is a singleton. If 6 is an

output shifter then reducing it is equivalent to eliminating output for all input com-
binations in the set Zy. This means that an investigation of 0 can address the question:
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should a hypothetical social planner ever choose to exploit a free disposal opportunity
and throw output away? Proposition 1 provides an answer. (Formal proofs are
contained in the Appendix.)

PROPOSITION 1. If the parameter 0 is an output shifter then social welfare W is a quasi-convex
Sfunction of 0, and hence is maximised by choosing either 0 = 0 or 0 = 1.

The conclusion is that 0 should be chosen as large or as small as possible and
never at some intermediate value; maximising expected social welfare always involves
either damaging the production function as much as possible or not damaging it
at all.

To see why, suppose that 0W/00 < 0. A reduction in 0 directly harms wy(z) for
z € Zy. However, the potential }y(z) also falls, whence the probabilities with which
states in Zy are played diminish, pushing play elsewhere. Since 0W/00 < 0, this second
effect must help welfare and so states outside Zy must yield higher welfare. Crucially,
further reductions in 0 must also be beneficial: the cost of doing so (the reduction in
wy(z) for z € Zy) falls since 7 is visited less often. Thus, if it is optimal to reduce 0, then
it is optimal to do so maximally.

4.3. Influencing Production Based on Inputs

It is instructive to consider a specific application that also expands the set of para-
meters. Suppose that 0 € [0,1]'is now a vector of parameters, one for each state of
play, and that Gy(z) satisfies

Go(z) = 0.G(2)

for all z € Z. This application has two features. First, the parameter 0, only affects
the output of the public good emerging from the collection of inputs z. This means
that the production function may be manipulated very finely. Second, the
specification implements a free-disposal property. Specifically, G(z) represents a
production-possibility frontier, and any production function lying below this frontier
is feasible.

Proposition 1 applies to each component of the vector 0: for each z it is optimal
either to leave production unhindered, or to discard it completely. This generates a
corollary.

COROLLARY. Suppose that the family of production functions comprises all production func-
tions G(z) satisfying 0 < G(z) < G(z). Then the socially optimal member G'(z) satisfies

v | G(2) if z€ Z* and
G(Z)_{o if 2& 27,

Jor some subset Z* of feasible input combinations. The corresponding socially optimal parameter
choice 0* satisfies 07 = 1 if z € 2* and 0, = 0 otherwise.

A similar claim also holds if the lower bound to the family of public-good production
functions is something other than zero. For instance, if Gyp(z) = 0.G(z) + (1 — 0,)G(z)
where G(z) > G(z), then a similar corollary obtains where G*(z) = G(z) for z ¢ Z*.
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Note that a direct implication of this corollary is that high performing public-good
production functions tend to exhibit discontinuous steps. Thus, a successful collective
action entails teamwork: players need to coordinate on play within the set Z* in order
to succeed.

4.4. Influencing Production Based on Feasible Output

In Section 4.3, changes in a parameter are specific to output arising from a single
strategy profile (interpreted as the privately-provided inputs) and hence capture subtle
variations in the production technology. For instance, in the committee example
(Section 1) production can depend on the precise identities of those who show up to
the meeting. In contrast, a second application is considered now in which the influence
of parameter changes is rather blunt.

Suppose that the private actions z € Z combine to yield an intermediate public good
y € Y via a production function y = H(z). The value of the final public good y to an
individual is Fy(y) = 0,F(y) for some parameter vector 0 € [0,1] Y116 This yields a final
public-good production function of Gy(z) = Fy[ H(z)]. The key difference here is that 0,
affects the value of the public good when output y occurs. This is not specific to a
strategy profile; there may be many states z that induce this outcome. In fact, Z()y =
{z € Z: y= H(z)}. By inspection, 0, affects the value of the public good in the same way
forall z € ng, and so each element of the parameter vector is an output shifter. Hence,
Proposition 1 applies.

COROLLARY. Suppose that the family of production functions comprises all production func-
tions G(z) satisfying G(z) = FIH(z)], where the value of the public good I(z) satisfies
0 < F(y) < F(y) forall y € Y. Then the socially optimal member G*(z) satisfies

v = { FIH()] if H(z) € V", and
¢ {0 if H(z) ¢ V7,

Jor some subset YV of feasible public-good intermediate output. The corresponding socially optimal
parameter choice 0 satisfies 0: =1ifye Y and 0; = 0 otherwise.

A concrete illustration is a contributions game in which H(-) takes the form H(z) =
> iz In the committee example, this would hold when production depends solely on
the number of attendees at the meeting, and not on their precise identities.

4.5. Welfare-Based Thresholds

Proposition 1 and its corollaries reveal that welfare is optimised when G(z) either fully
exploits the production possibility frontier or produces nothing. It does not, however,
specify which input combinations should be subject to the complete disposal of public-
good output. This issue is addressed here.

For the purposes of this Section and, in particular, for Proposition 2 below, the focus
is on the specification from Section 4.3 used in the first corollary to Proposition 1. That

'% This specification extends straightforwardly to Fy(y) = 0,F(y) + (1 — 0,)F(y) where F(y) > F(y).
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is, the family of feasible public-good production functions consists of all function G(z)
satisfying 0 < G(z) < G(z), where G(z) is a production-possibility frontier. Equivalently,
the production function is influenced by a parameter 0 € [O,l]‘z‘ and satisfies
Go(z) = 0.G(2).""

The statement of the results is assisted by some simple notation. Abusing earlier
notation a little, write ;1 (z) and (z) for the maximum and minimum potential and
w; (z) and wy(z) for the maximum and minimum welfare in state z. (Such maxima and
minima are achieved by setting 0, = 1 and 0, = 0 respectively.) Fixing 4, write W} for
the maximum welfare achievable via the socially optimal choice of G(z), or equivalently
the socially optimal choice of the set Z*. Finally, and without loss of generality, suppose
that ¥ (z) # Wo(<) for all z # 7. This last assumption is made solely to ease the state-
ment of Proposition 2.

The optimal production function depends upon A. For instance, when A = 0 each
strategy profile is equiprobable (revising players choose randomly) and so discarding
production does not influence long-run play. The only impact, therefore, of setting
0, = 0 is to reduce welfare when zis played. As a result, it is optimal to set 0, = 1 for all
z, equivalently, Z* = Z.

For smaller levels of noise it is optimal (as is confirmed formally in Proposition 2) to
neglect production opportunites in some states of play, based on a welfare-based
threshold rule. The threshold is closely related to a set of so-called ‘privately feasible’
input combinations.

DEFINITION. The set Z of privately feasible input combinations are those states z satisfying
W1(2) > Yo() for all 2 # z The maximum privately feasible welfare is w = max,_z wy(z).

To understand this definition, consider a player who is required to pay the private
costs of all the other players. Such an individual would receive a net payoff of Yy(z).
Furthermore, suppose that this player were to be asked to choose an input combination
z€ Z. When z € Z the player can be induced to choose z by setting 0, = 1 and 0, = 0
forall 7 # z ;if not, there is always another state with higher potential, that is therefore
privately preferable.

PROPOSITION 2. Suppose that the family of production functions comprises all production
functions G(z) satisfying 0 < G(z) < G(z). Then the socially optimal member satisfies

. _ . w; (Z)e)v‘/ﬁ(z) — wo(Z)Ciw“(z)
= 1 > =
G'(2) = G(2) © y(z) > W, where y(z) = T o ,

and G*(z) = 0 otherwise. Allowing /. — 00, y(z) — wy(z) and W, — w. For A large enough

v G if w(z) >, and
G (Z)_{O ifwi(z)<12/.

Hence when quantal-response strategy revisions approximate best replies, the optimal public
production implements a threshold rule: production possibilities are fully exploited (so that z € Z*)
if and only if welfare meets or exceeds the maximum privately feasible welfare.

7 The arguments presented here, including Proposition 2, also hold when Gy(z) = 6.G(z) + (1 — 6.)G(=).
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To understand the role of the expression y(z) in this Proposition, recall that a switch
from 0, = 0 to 0, = 1 has two effects: it enhances the welfare arising from the play of z
and also moves probability mass away from other states of play. The ratio y(z) combines
these effects. On the one hand, the numerator of y(z) reflects the increased welfare in
state z (adjusted by its probability). On the other hand, the denominator represents the
probability shift alone.

To understand the second part of the Proposition, it is useful to inspect the effect of
a local change in 0,. The proof of Proposition 1 in the Appendix reveals that

i—?j o 815(;(;) + 1 algi)(zz) [wo(z) — WI.

Observe that the direct welfare effect (the first term) is invariant to A. The probability
shift effect, however, increases with A. Thus, for large enough 4, aggregate welfare
increases with 0, if and only if w(z) > W. This is, of course, a local effect only; the proof
of Proposition 2 reveals that the same is true when considering the choice between
0.=1and 0,=0.

Finally, note that W — @ as 4 — oo. For large /4 (for which the quantal responses
approximate best replies), the process spends most time in states that maximise the
potential. If a state z maximises the potential then it must continue to do so when 0, =
1 and 0, = 0 for all other 7. Thus, a state is only potential maximising if it is a member
of Z; that is, only privately feasible states are played in the limit. As a result, the highest
privately feasible welfare (that is, w) is the highest achievable aggregate welfare.

5. On the Private Provision of Public Goods

Further intuition is provided in this Section via a return to the example of Section 2.1.
In that case the threshold rule (for general /) is often based on a simple pairing of
a production target (a minimum threshold) together with a cap on contributions
(a maximum threshold).

5.1. Choosing Welfare-based Thresholds

When the family of public-good production functions consists of all those functions
satisfying 0 < G(z) < G(z), the socially optimal public-good production function is
easy to interpret. Recall that this family forms the basis for Proposition 2 and that the
set Z° is determined (at least for large enough 4) by the maximum privately feasible
welfare w. A first task is to calculate this maximum.

To do this, suppose (without loss of generality) that action sets are finite subsets of
the positive real line (Z; C Ry) with 0 € Z; and that ¢;(z;) is strictly increasing with
¢(0) = 0."® This means that players always have the option of doing nothing and so
incurring no costs.

It is straightforward to observe that the minimum potential for a state z, achieved by
discarding all production, satisfies Y (z) = —Y_ ", ¢;(z). Maximising this over all
possible states leads to max,cz Y¥o(z) = 0. What this means is that there is always a state

'8 This specification for strategy sets and costs is without loss of generality because a player’s strategies may
be relabelled with their associated costs and the lowest cost may be set to zero.
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(namely, z; = 0 for all i) with at least weakly positive potential. In turn, this means that
if a state of play is to be visited with positive probability in the limit (that is, for large 1)
then it must have a positive potential. Generically, therefore, the set of privately feasible
states is

Z=1¢2:G(z)> i:cz(zl)

where the genericity requirement is simply that there is no positive-contribution state
for which the public good’s private value is exactly equal to the private cost of provision.
The welfare threshold w is obtained by finding the maximum over Z. Thus, it is optimal
to maximise production alone whenever welfare attains or exceeds its privately feasible
maximum.

Taking this one step further, suppose that ci(z) = cz; and G(z) = F(Z) for
zZ= Z]":l zj, where F(') is a strictly increasing and concave production function. The
set Z is then the set for which the (private) average benefit of contributions exceeds the
private average cost. Given the concavity of F(-), the maximum privately feasible level of
contributions is above that which would be forthcoming in the absence of any pro-
duction-function manipulation. This is illustrated in Figure 8(a). The associated pro-
duction level corresponds to (so long as n is sufficiently large) the threshold below
which it is socially optimal for production to be thrown away. In addition, the concavity
of F(-) means that welfare w;(z) is a concave function of Z Thus, in general, the
optimal choice of public-good function will be
«n_ JF(Z) f K<Z<Kand
(=) = {O otherwise, (11)

for some pair of thresholds K and K; there may be a maximum threshold as well as a
minimum. The key observation is that the welfare-based threshold rule translates into a
production-based threshold rule in the limit. In fact, this is true away from the limit
when a further requirement is met. The next Section investigates.

5.2. Choosing Production-based Thresholds

Here, the restriction to a contributions game with symmetric linear costs and concave
production continues to be made. The objective is to find conditions under which the
welfare-based threshold rule of Proposition 2 translates into a pair of production
thresholds, as in (11).

When F(-) is concave, this is true for sufficiently large A. For general 4, however, it is
true so long as the production function is sufficiently concave. The measure of con-
cavity required here is the p-concavity notion exploited by Caplin and Nalebuff
(1991)."9 A positive-valued function F(*) is p-concave if F(*)” is concave. For p = 1, this
is simply concavity. For p — 0, it is log-concavity. Higher values of p correspond to
more stringent concavity.

19 Caplin and Nalebuff (1991) attributed the concept to Avriel (1972). It has found economic application
in recent work by Anderson and Renault (2003), Cowan (2007), and Cowan and Vickers (2007).
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Fig. 8. Choosing a Threshold

Note: These Figures illustrate the socially optimal threshold for the specification F(Z),= v/Z
for Z =37 %, linear costs with ¢ = %, n =4 players, and Z; C [0,2.5]. When the pro-
duction frontier is attained, the unique equilibrium outcome (extending the action sets as
necessary) is such that Z* = 1; this involves the equality of marginal cost (PMC = ¢) and
private marginal benefit (PMB = F'(-)). Since the social marginal benefit (SMB = nf”(-)) is
everywhere above marginal cost, the social optimum involves maximum contributions from
all players so that Z= 10. Finally, privately feasible states are those involving contributions
where private average benefit (PAB) is greater than average cost (here equal to PMC). Thus
Z = {z: Z < 4}; for large enough 1 it is optimal to introduce a production threshold at
K=4.

PrROPOSITION 3. IfF(-) is sufficiently concave then, for all 2, n, and ¢, y(*) is concave in total
contributions, so that the optimal public-good production function takes the form:

G*(2) = {F(Z) if K< Z<K, and
0 otherwise

for thresholds K < K. F(-) is ‘sufficiently concavé if it is p-concave for p ~ 1.285.

The p-concavity requirement has an alternative interpretation. Suppose that a public
good of value y > 0 is to be produced. The private cost of the required contributions is
C(y) = cFl(y). F(-) is p-concave if and only if —d log C(y)/dlogy > p — 1; a re-
striction on the elasticity of the slope of C(y).*” As an example, F(Z) o Z"is p-concave if
and only o < 1/p.

A conclusion emerging from this Section is that public-good production technolo-
gies that work well are those that incorporate simple production targets. A corollary is
that aggregate-welfare-enhancing production functions will often lead to multiple
equilibria in the underlying collective-action game. One issue that remains open is the
way in which optimal threshold rules react to changes in the noise parameter 4. This is
the focus of the next Section.

0 This is also equivalent to the curvature measure (Robinson, 1938, pp. 40-1) known as ‘adjusted con-
cavity’.
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5.3. Participation and Group Size

It has already been argued that, when noise is very large, it is socially optimal to exploit
any production possibilities fully. On the other hand, when noise is very small, only the
states that result in production higher than that a private individual would be prepared
to undertake should retain their full output. These observations suggest that as noise is
reduced (as 4 grows larger) it is socially optimal to impose increasingly stringent
thresholds. An inspection of Proposition 2 explains why this might be expected. Note
that y(z) is decreasing in A. Hence if W, (optimal aggregate welfare) is locally
increasing in /, then the set of states for which production is maximised shrinks.
However, were W) to be locally decreasing, this might not be the case. In fact, it is
possible to construct examples for which the production threshold is non-monotonic
in A

Consider a game where Z; = {0,1} for all 7, so that each player decides whether or
not to participate in the collective action. Once again assume costs are symmetric, so
that ¢;(z;) = cz; Public-good output arises from a concave production function I whose
argument is the total number of contributions. For the purposes of the analysis and
Figure presented below, and as in the previous subsection, the specification
F(Z) = V/Z is employed.

This specification meets the curvature restriction of Proposition 3 and hence there
will be an upper and lower production threshold. With n agents, suppose that ¢ < n/4.
This ensures that, conditional on the full exploitation of production, welfare is in-
creasing in the number of participants and so it is socially optimal for all n agents to
join the collective action. This also implies that it is never optimal to impose a mean-
ingful upper threshold. However, it is optimal to impose a lower threshold. In fact, in
the limit as A — oo, the socially optimal threshold will be the highest integer weakly
below 1/02. More generally, the value of the optimal threshold will depend upon A.
Figure 9 illustrates.

The noise term is on the bottom axis: rather than A itself, a monotonic transforma-
tion 1/[1 + exp (A¢)] is used. This represents the probability that a revising player
makes an ‘error’. To see what is meant by this, consider a world in which nobody
participates, and in which there are insufficient contributions to reach the threshold.
A best reply for any revising player i would be z; = 0. As 1 increases, however, there is
positive probability that such a player will choose to participate, and set z; = 1 (that is,
to act ‘against the flow of play’). The probability such a choice is made is given by
1/[1 + exp (Lo)].

Figure 9 shows that the socially optimal production threshold is non-monotonic in
noise. As noise increases (that is, as 4 decreases) the optimal threshold rises, before
falling to one. Once there is sufficient noise it is no longer optimal to use a threshold at
all; this is equivalent to setting a threshold at K = 1 for the purposes of this example.
For intermediate levels of noise, however, the threshold should be set more stringently
than it would be for lower levels. To see why, consider the states of play above the
threshold. When noise is reasonably large but not overwhelming, a good deal of time is
spent in such states. Thus by increasing the threshold beyond the level appropriate for
vanishingly small noise, aggregate welfare may in fact be increased. When noise is
extremely small, however, these states will never be played.
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Fig. 9. Production Thresholds and ‘Error Probabilities
Note: The Figure illustrates the socially optimal thresholds for three different values of the
parameter ¢. The lower ¢, the higher will be aggregate welfare, and the higher will be the
optimal threshold K. Asymptotically (as 4 — oo) the threshold becomes the highest integer
x such that x < 1/02. For the three choices of ¢ above, this is 9, 6, and 4 respectively. For
¢ = 0.325, the threshold declines monotonically in noise. However, for ¢ = 0.400 and ¢ =
0.475, there is non-monotonicity in A.

6. Discussion and Related Literature

In this article a collective action is a game in which payoffs combine private and
common interests. The common element arises from a public-good production tech-
nology and the article asks what types of production function are conducive to success.
The answer here envisages a family of production functions bounded above by a
technological constraint. Inferior members of this family might be interpreted as
functions that are obtained via the exploitation of a free-disposal property. It is socially
optimal to either leave production at its highest possible level or damage it maximally.
Following this procedure, thresholds (often taking the form of production targets) are
a robust feature of successful collective actions.

The interpretation favoured here does not rely upon the presence of a mechanism
designer. Rather, the results help to explain why the shape of a public-good production
function matters. This has been a long-standing issue for sociology. A leading example
is ‘critical mass’ theory (Marwell and Oliver, 1993).%! Oliver et al. (1985), for instance,
considered a variety of production-function shapes, labelled as ‘accelerating’ (convex),
‘decelerating’ (concave), ‘general third-order’ (S-shaped), and ‘step’ functions. They
relied upon a variety of numerical simulations and hence it is difficult to provide a

2L A retrospective assessment of this literature was provided by Oliver and Marwell (2001).

© The Author(s). Journal compilation © Royal Economic Society 2009



86 THE ECONOMIC JOURNAL [JANUARY

concise summary of their conclusions.?® Nevertheless, they observed that ‘accelerating’
and ‘step’ production functions can lead to success by making individuals pivotal.
However, a ‘critical mass’ of participants is needed in order to reach this point. As Macy
(1991) noted, this leads to ‘[...] a bistable system with cooperative and noncooperative
equilibria’. Put simply, the introduction of a threshold creates an equilibrium-selection
problem.

This article offers a single framework which both addresses the equilibrium-selection
problem and provides a theoretical justification for its existence. The results show that
the thresholds of Granovetter (1978) and the ‘minimal contributing sets’ (that is, a
minimum number of participants in a binary-action game) of van de Kragt et al. (1983)
are precisely the features that are associated with the long-run robust success of col-
lective actions.** The paper also develops a criterion for setting targets. They should be
chosen so that, in effect, voluntary participants are asked jointly to achieve a level of
welfare greater than that which could be profitably delivered by an individual facing all
private costs but receiving only a single private benefit. Somewhat mischievously, they
are asked to ‘beat the private sector’.

An alternative perspective is that of a hypothetical social planner. The type-revelation
problem of mechanism design is absent, and hence the planner simply wishes to im-
pose the socially efficient outcome. Without coercion, the planner can create a socially
efficient equilibrium but cannot enforce its play. Even if current players obey a sug-
gestion to coordinate on the desired equilibrium, there is no guarantee that future
players will do so. Therefore, policies must be robust to evolving play. This is the
evolutionary-implementation approach taken by Sandholm (2002, 2005, 2007), in
which the desired outcome must be learnt eventually by players who follow reasonable
myopic adjustment processes.

Bagnoli and Lipman (1989), Admati and Perry (1991) and Marx and Matthews
(2000) considered related models of collective action which feature threshold devices.
They demonstrated that the shape of a production technology may influence incen-
tives. These papers provide mechanisms that generate efficient equilibria. However,
these authors, who focused on existence issues, did not consider whether an efficient
equilibrium will in fact be played. In response, the evolutionary-implementation ap-
proach follows the lead of Cabrales (1999), who noted (p. 160) that ‘[...] very little
attention has been paid to the issue of how equilibrium is reached, and whether it is
stable’. It is not enough to create a socially optimal equilibrium; rather, the mechanism
must ensure that such an equilibrium actually is played.

Appendix. Omitted Proofs
Proof of Proposition 1. From (9) and (10), and suppressing arguments z and 0;

22 This is also true of subsequent strands of literature, including Macy (1990) and Heckathorn (1993,
1996). The current article is similar in spirit. Here, however, there is no need to resort to simulations: by
leaning upon the theoretical advances of Blume (1997) and others, closed-form results are available.

% van de Kragt et al. (1983) found that pre-play communication was important for the success of a
collective action. The focus of their experiments is the relationship between communication and coordina-
tion and is related to a large literature on this topic, for example Cooper et al. (1992). Nonetheless, their
conclusions stress the importance of the threshold structure discussed here.
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w Z exp(A) = Z wexp(A).
2eZ €2
Differentiating both sides with respect to 0 yields
4
Zexp ) +AWZ exp(AY) = Zexp ) (80+A %)
€2 zeZ €2

Collecting potential terms on the right-hand side and rewriting;

%—?Zexp(u// Zexp ) [61” lp(u W)} (12)
€2
= ;Z”exp )w 20 [n+ Mw— W), (138)

where the second equality follows because Ow/00 = ndy/00 = n0G/00 and because /00 =
O0w/00 = 0 for z & Zy. Differentiating again and evaluating at dW/ df = 0,

9G\* G L (0G\?
892 Zexp (A Zexp ) {Xn(ae) +[n+ A(w— W) W—i—/u(%)

€2 €2
0 is an output shifter and so the derivate of G is identical for all z € Zj. Hence

HZepAlﬁ ZeXp?l// [n+ A(w— W),

€2 ZGZU

where 0G/00 # 0, since z € Zy. So at a stationary point OW/00 = 0, the second term on the right-
hand side must be zero. As a result, the second derivative is

W J
W_ Zexp lﬁ/ZexpMp
€2y 262
and Wis therefore quasi-convex in 0 as required. (|

Proof of Proposition 2. From (9), aggregate welfare satisfies

We o4 _
w(z)e = where A= Z w(z)e™® and B= Z M

W = 7
() ’
22 EZ’EZ € B 2€2 €2

Suppose that 0" is a collection of optimal parameters, and write W, for the associated ag-
gregate welfare. Pick a state of play zwhere 6] = 0, if one exists. Since this is an optimal choice, a
switch to 0, = 1 must result in (weakly) lower aggregate welfare. Thus,

A4+ (=) ox A A
w(z)e u)f,(z)e <A o <l
B+ eA'/ﬁ(Z) — e“//n(z) B B
which follows from simple algebraic manipulation. For a state 7 where 0, = 1, a switch to 0, = 0

must result in (weakly) lower aggregate welfare, and hence y(¢) > A/B.

For the second part of the Proposition, since ¥ (z) > ¥o(z) and w;(z) > wy(z), by inspection
7(2) — wi(2) as A — oo. To show that W — @, as noted in the text, observe that when 4 — oo
the process spends almost all of its time in Z. Hence lim;_, W;' < max,_; w(z) = @. Moreover,
this bound can be attained by setting 0, = 1 for the maximiser of w(z) over Z,and 0, = 0 for all
other states. For the final statement of the proposition, in states where w; (z) > W, it must be the
case that 0] = 1 for all A large enough, and similarly 0, = 0 when w; () < W;. It remains to be
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shown that 07 = 1 for the state z that achieves w(z) = @ within Z. The process stays almost always
within Z for large enough 4. Moreover, it must spend almost all of its time in the state of play z if
not, then by setting 0, = 1 and 6, = 0 for all other 7 welfare could be strictly increased. Given
that the process is almost always at z for large 4, it makes no sense to set 0, = 0.

Proof of Proposition 3. For a Cournot-contributions game with symmetric linear costs, the
potential and welfare of state z depend only upon the sum of contributions Z = Yz, In fact,

LinF(Z) — ¢Z) + ¢Z
L—-1

AF(Z)

y(z) =9(Z) where (Z)= and where L=e .

To check concavity, differentiate twice to obtain

_ nlF(Z)[L —1~2F(Z)] _ InL[F(Z)]

—¢, and }'(Z)=

7(2)

(L— 1)2 L—1
. nL[L — 1 — AF(Z){AF (Z2)]* + F'(Z)} B UnL2F (Z)*[L — 1 — JF(Z)]
(L—1) (L—1) '
For concavity, §(Z) must satisfy 3" (Z) < 0, which occurs if and only if
1;((;)) (L= 1)L =1 = iF(2)] < AP (Z)2(L— 1) — i — ALF(Z)).

This will require I(:) to be sufficiently concave. In fact, writing r = AI(Z), this requirement is
F(Z)F'(Z) - 2r(e” — 1) — r*(e” + 1)
F(Z2)? — (e=1)(e"=1-r)

(14)

A sufficient condition for concavity of }(Z) is for the above inequality to hold for all r > 0.
Noting that I() is p-concave if and only if —F(Z)F"(7)/[F'(%)1? > p — 1, and that the right-
hand side of (14) is bounded below by —0.285, this completes the proof.
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