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Coordination problems arise in a multitude of economic interactions. Recent advances in the field of game
theory have shed new light on these problems and the ways in which they might be analysed. This issue of
the Oxford Review of Economic Policy first examines some of the theoretical dimensions to this literature, as
well as some empirical and experimental insights. It goes on to apply some of these ideas to a number of
important policy areas, including macroeconomic policy coordination, public good provision, and prob-
lems of political coordination.

I. GAME THEORY IN THE SOCIAL
SCIENCES

During the latter half of the twentieth century, game
theory rose to become a central feature of modern
microeconomic analysis.2 Prior to the advent of
game-theoretic methods, classical economics fo-
cused upon the analysis of price-driven market
systems. In these systems, economic agents are

faced with a set of market prices containing all the
relevant information for their decisions. Taking
prices as given, each economic agent acts optimally.
This idea of simultaneous and mutually compatible
optimization is captured by the notion of a competi-
tive equilibrium, and is expounded in a research
programme which culminated in the contributions of
Arrow and Debreu.3 A competitive equilibrium
comprises a set of prices and transactions such that

1 The authors would like to thank Chris Allsopp, Alison Gomm, Ken Mayhew, and the contributing authors to this special issue
for their help in the preparation of this paper.

2 Game theory is an integral part of many modern microeconomics textbooks, such as Kreps (1990) and Mas-Colell et al. (1995).
3 For the full exposition see, for instance, Arrow and Debreu (1954), Debreu (1959), and Arrow and Hahn (1971).
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each agent’s transaction is feasible and optimal
given those prices.

Of course, there were notable exceptions to this
rule—among them were the classic contributions of
Cournot (1838), Bertrand (1883), and Edgeworth
(1897), each of whom considered the oligopolistic
interaction of firms. Nowadays it is common to view
all of these contributions through the lens of game
theory: the study of strategic interaction. Strategic
interactions arise when an individual agent’s deci-
sion has the potential to affect the decision another
might wish to take. Notice that this does not gener-
ally require the presence of a price system. The
ideas of competitive equilibrium fit well with the
textbook (Robbins, 1932) view of economics as the
study of ‘scarce resources versus infinite wants’.4

Game theory allows a broader conception of eco-
nomics. In his assessment of John Nash’s contribu-
tions to economic theory, Myerson (1999, 2002)
argued that:

To understand the importance of Nash’s work . . . we
should begin with the very definition of economics itself.
A generation before Nash could have accepted a nar-
rower definition of economics, as a specialized social
science concerned with the production and allocation of
material goods . . . today economists can define their field
more broadly, as being about the analysis of incentives
in all social institutions.

So what precisely was the contribution of Nash and
the other early game theorists?5 First, Nash (1950b,
1951), von Neumann and Morgenstern (1967), and
others provided a language within which we may
formulate strategic decision-making problems. An
interaction can be represented as a normal-form or
strategic-form game. Each strategic-form repre-
sentation has at least three elements: players, their
available strategies (or actions), and the payoffs
they receive given any combination of strategies

chosen by themselves and the other agents in the
game. Second, Nash (1950a, 1951) provided a
solution concept—now known as Nash equilib-
rium. A Nash equilibrium specifies a set of strate-
gies (one for each player) such that each player’s
strategy is a best response to the strategy associated
with each of the other players.

Notice that a Nash equilibrium shares some of the
features of a competitive equilibrium. In particular,
no player in a Nash equilibrium has an incentive to
deviate from her specified strategy. Nor does any
agent in a competitive equilibrium have an incen-
tive to alter the quantities involved in her transac-
tions. Furthermore, in a competitive equilibrium,
each agent faces the same set of prices, while a
Nash equilibrium might be seen as a commonly
shared expectation of how the game will be played.
Hence both concepts admit, in some sense, an
‘optimizing behaviour with rational expectations’
interpretation.

If we allow the representation of a given interaction
as a game, would those involved in fact play a Nash
equilibrium? This question must be asked even
when a Nash equilibrium is unique. Many games of
interest, however, possess multiple Nash equilibria.
Settings of interest (some of which are discussed in
section II and other papers in this issue) include
technology choice, speculative currency attacks,
bank runs, wage bargaining, and tactical voting.
When games exhibit multiple equilibria an additional
question arises—which one (if any) will be played?
Notice that these questions are often asked of
competitive equilibria. Interestingly, the answers
are not unrelated.6

A possible justification for Nash equilibrium play
might involve the imposition of some degree of
‘rationality’ on the part of the agents involved.7 For

4 More accurately, Robbins (1932) describes economics as ‘the science which studies human behaviour as a relationship between
scarce means which have alternative uses’.

5 Some of the classic contributions are collected together by Kuhn (1997).
6 The paper by Jeffery Amato, Stephen Morris, and Hyun Shin in this issue employs a competitive model coupled with an

informational specification similar to that present in the games studied here.
7 This is by no means the only possible justification for the play of a Nash equilibrium. Alternative avenues of research have

been pursued by various authors. Biologists introduce the concept of evolutionarily stable strategies (ESS), which is closely related
to Nash equilibrium (see Maynard Smith, 1974). They study the way in which evolutionary forces might result in the play of an
ESS (for a good survey of this material see Hofbauer and Sigmund, 1988). Similar evolutionary justifications can be provided for
the play of Nash equilibria (see Weibull (1995) for a very complete study). Another (closely related) approach is the stochastic
adjustment dynamics literature, expositions of which can be found in Young (1998), Samuelson (1997), and Vega-Redondo (1996).
The fictitious play literature takes yet a different route toward the same goal. See Fudenberg and Levine (1998) for a description
of these ideas, along with a general treatment of learning to play Nash equilibria in games.
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example, players might be assumed to have consist-
ent preferences over outcomes which guide their
choice. As a result they might be assumed to choose
the best alternative given the beliefs they hold. This,
however, is not enough for Nash play. Aumann and
Brandenburger (1995) show that this play requires
common knowledge of such rationality, common
knowledge of the payoffs, and common knowledge
of the conjectured play of the game. Common
knowledge of rationality (for example) requires that
all agents must know that all agents are rational, and
all agents must know that all agents know this, and
so on.8 In their papers in this issue, Oliver Board and
Stephen Morris examine in more detail the connec-
tions between game-theoretic solution concepts and
the common-knowledge requirements for their use.

This approach is somewhat unsatisfactory. First,
common knowledge is a stringent assumption. It
might be reasonable to assume that players know
their own preferences. Furthermore, it might be
reasonable to suppose that they know the prefer-
ences of others.

But is it reasonable to suppose that Player A knows
that Player B knows that Player A knows that
Player B knows Player A’s preferences? Perhaps
not. Second, the equilibrium selection problem is
simply not addressed, since there is common knowl-
edge of conjectured play by assumption. The re-
moval of these common-knowledge requirements
and the imposition of only rationality and knowledge
of payoffs, however, result only in the prediction of
the play of undominated strategies.9 Furthermore,
common knowledge of rationality and payoffs alone
result in the prediction of the play of strategies that
survive iterated deletion.10 Of course, Nash equilibria
survive such procedures and hence any selection
problem remains.

Alternative assumptions are possible. For example,
games of incomplete information formalize the idea
that players are perhaps unsure of the payoffs and

rationality of other agents. This approach is embod-
ied in the classic contributions of Harsanyi (1967a,b,
1968). Many economic problems fall within this
setting. Indeed, the aforementioned examples (such
as speculative attacks on currencies and technology
choice) are all instances in which the players might
not have full knowledge of the payoffs enjoyed by
(and hence the motivations of) all the players. In
games of incomplete information (when such knowl-
edge is incomplete) behaviour will depend not only
on players’ beliefs about payoffs, but also on play-
ers’ beliefs about other players’ beliefs, and so on.

Two approaches to this problem have been sug-
gested. First, the problem might be simplified by
assuming that the payoffs of each player are drawn
independently from a commonly known distribution.
Roughly speaking, this means that although the
precise payoffs and motivations of an opponent are
unknown, the probability that various payoffs arise
is commonly known by everyone. In this case,
‘higher-order beliefs’ (beliefs about the beliefs of
others) do not play a role: a player does not know the
identity (in the sense of payoffs or, more generally,
type) of an opponent, but there is no uncertainty
about what beliefs her opponent holds about her.
Second, a fully general approach, such as that of
Mertens and Zamir (1985), might be taken. This
involves a full consideration of a player’s beliefs
about another player’s beliefs about another play-
er’s beliefs, and so forth. Unfortunately, this quickly
becomes extremely complex and therefore does not
lead to sharp answers—and sharper answers are
needed to answer policy questions.

In this paper, and in the contributions of this issue, a
desire to tackle the problem of multiple equilibria and
a dissatisfaction with the imposition of common-
knowledge assumptions leads to the study of global
games (Carlsson and van Damme, 1993). The
specification of global games abandons the common
knowledge of payoffs, but does so in a pragmatic
way. Formally, Morris and Shin (2002) define global

8 For further discussion of common knowledge, see the survey by Geanakoplos (1993).
9 A dominated strategy is one that is worse than another strategy, no matter what actions are taken by the other players.

10 We may delete dominated strategies by discarding any strategies that are dominated. Once we do this, however, it may be the
case that other players find that some of their remaining strategies are dominated. The logic proceeds along the following lines: ‘My
opponent would never to find it optimal to play A, therefore I should never play B. She will anticipate this, and hence never play
C, so I should never play D.’ Such reasoning, when repeated, yields the iterated deletion of dominated strategies. For a standard
textbook treatment see, for instance, Osborne and Rubinstein (1994). This procedure has little bite in games with multiple Nash
equilibria.
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games as: ‘games of incomplete information whose
type space is determined by the players each ob-
serving a noisy signal of the underlying state’. This
definition is somewhat technical, and requires ex-
planation. Formally, there is common knowledge of
rationality. In other words, players are assumed to
choose optimizing actions given the beliefs they hold
about the play of others. However, there is not
common knowledge of payoffs—hence we are
dealing with ‘games of incomplete information’.
Rather, payoffs for all players (which embody their
objectives) are determined by some unknown ‘state
variable’. A state variable is some aspect of the
environment that affects the payoffs of everyone.
For instance, in the case of a group of speculative
traders attacking a currency, the unknown state
variable might be the size of the central bank’s
currency reserves. For agents attempting to coordi-
nate on the same technological standard, the state
variable might be the true underlying advantages of
one technology over another. Although the state
variable is unknown, each agent receives a ‘signal’
of it, which provides information about their own
payoffs. Crucially, however, it also tells a player
about the state variable itself—and hence the likely
signals of the other agents. So, if a player were to
know the value taken by the state variable, she
would understand the ‘real’ game that is in play. Of
course, she does not know this, and hence must use
her signal (i.e. the information available to her) to
infer the value taken by the state variable. Since the
signals are not perfectly accurate (so that economic
agents are imperfectly informed about the situa-
tion), agents may view the game in very different
ways. It follows that players must make choices
taking into account the fact that other players might
not share their views. Thus their strategy choices
must be placed in a global context (the class of all
games that could possibly be in play) rather than a
local context (in which payoffs are commonly known
to all players.)

The reasoning employed in the analysis of such
global games may appear complex. None the less,
the conclusions drawn are often simple. Global
games often possess unique equilibria, even though
there would be multiple equilibria in a full informa-
tion analogue: the equilibrium selection problem is
(perhaps surprisingly) solved via a relaxation of the
common-knowledge assumptions. Furthermore, the

strategies employed in such equilibria correspond
closely (and often exactly) to those that a naïve
player might choose according to some simple rule
of thumb. An explanation of these claims is provided
in the remainder of this paper and in the contribu-
tions of this issue.

In the next section we consider some simple exam-
ples of games with multiple Nash equilibria and the
coordination problems that arise. In these examples,
the payoffs of the game are assumed to be com-
monly known by all players.

Following that (section III), we relax this assump-
tion. We allow payoffs to be affected by fundamen-
tal uncertainty, in the sense that the payoffs are
contingent upon an unobserved state variable. Play-
ers privately observe noisy signals of the underlying
state variable, upon which they base their actions.
This generates strategic uncertainty: players are
uncertain of the signals received by others, and
hence are uncertain of their likely actions. We use
a simple two-action game (interpreted as a technol-
ogy-adoption problem) to demonstrate that this ap-
proach can provide a solution to the equilibrium-
selection problem.

We expand this to a many-player example (a public-
good contribution problem) in section IV. We ex-
plain the roles of fundamental uncertainty (pertain-
ing to the state variable) and strategic uncertainty
(pertaining to uncertainty over the actions of oth-
ers).

Global games require players to infer payoffs from
the signals that they receive. Such signals may be
privately observed (comprising different signals for
each player) or publicly observed (where all players
receive the same signal). The nature of equilibrium
play depends critically upon the public versus pri-
vate nature of information sources. This feature is
discussed in section V. Finally, section VI provides
a brief guide to the themes of this issue.

II. THE PROBLEM OF COORDINATION

The presence of multiple Nash equilibria may be
problematic if the play of a particular game is to be
predicted. Within the social sciences, equilibrium
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multiplicity often manifests itself in the form of a
coordination problem. In an environment consist-
ing of many interacting decision-making individuals,
a Nash equilibrium represents a self-enforcing mode
of behaviour. Of course, it is only self-enforcing if
individual agents conform to their part in the equilib-
rium. This might not occur if they worry that other
agents will not do the same. In this section, we
illustrate this idea with a number of examples drawn
from both economics and political science.

(i) Coordination: Technology Adoption

Many products exhibit network externalities: their
value to a consumer depends (positively) on the
level of consumption by others.11 Examples are
commonplace. Today, the telephone is a useful
device precisely because it has been extensively
adopted by others. Electronic mail continues to
increase in value as more individuals obtain Internet
access.

The different technologies that support new and
emerging products often have mutually incompat-
ible standards. In this context, adopting users face a
potential coordination problem: it is preferable to
adopt the standard that is likely to be adopted by
others.

This situation can be represented using a simple 2 ×
2 symmetric game. Suppose that two individuals are
faced with the choice of competing standards A and
B. Each standard is of use to an agent if and only if
the other agent also adopts it. In this case a payoff
of H > 0 is generated for standard A, or L > 0 for
standard B, where L < H. If the players choose
different (incompatible) standards they receive a
zero payoff. The strategic-form representation is as
follows:12

A B

H 0
A

H 0

0 L
B

0 L

By inspection, this game has two pure-strategy
Nash equilibria (AA and BB), and adopters face the
problem of which standard (equilibrium) to coordi-
nate on. For instance, if both players choose A, then
a deviation by a single player will result in the loss of
the payoff H > 0. In the absence of pre-play
communication, societal context, or any other coor-
dination device, the players might very well
miscoordinate in their choice of technology, and
obtain a zero payoff. Alternatively, societal context
might (perhaps for historical reasons) point to the
inferior equilibrium. For instance, it is Pareto optimal
for players to choose AA, and yet they may coordi-
nate on BB.

One possible argument is that the Pareto-optimal
equilibrium AA is focal.13 Such an argument relies
on the fact that it is commonly known that AA is, in
fact, Pareto optimal. When players are not com-
monly certain of the payoffs, however, the row
player might worry that the column player believes
BB to be Pareto optimal, and hence focal.14

Examples of such coordination problems have been
studied extensively in the economics literature. David
(1985) and Liebowitz and Margolis (1990) docu-
ment the emergence of ‘QWERTY’ as the domi-
nant configuration for typewriter keyboards.15 The
early 1980s saw a standards battle between the
VHS and Betamax formats for domestic video

11 There is a large literature investigating the effect of network externalities. See, for instance, Katz and Shapiro (1985, 1986)
and Farrell and Saloner (1985, 1986, 1987), or for a textbook treatment see Shy (1995, 2001). Network externalities are a special
case of increasing returns—the marginal benefit from the increased production of a unit increases with the size of the installed base.
Increasing returns, and the associated path-dependence of technology choice, have been the subject of much debate. Authors such
as Arthur (1989, 1994) and David and Greenstein (1990) have argued that path-dependence may result in lock-in to an inefficient
technology. Their arguments are subject to a forceful critique by Liebowitz and Margolis (1994, 1995a).

12 This is a standard textbook representation. The two players choose an action from the columns and rows, respectively. In
each cell (corresponding to a strategy profile), the bottom-left payoff is enjoyed by the row player, and the top-right payoff by
the column player.

13 Focal equilibria are ones which simply ‘stand out’ from the rest. The idea was originally discussed by Schelling (1960).
14 The public-good contribution games studied by David Myatt and Chris Wallace in their article in this issue share these features.
15 David (1985) and Arthur (1989) both cite QWERTY as an example of inefficient lock-in, and extol the virtues of the competing

Dworak Simplified Keyboard (DSK). This research has been somewhat discredited by Liebowitz and Margolis (1990), who reveal
a number of inconsistencies in the historical sources used by these authors.
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recorders.16 In both of these examples, multiple
standards existed for a period of time, but eventually
most people coordinated on a single standard. There
are currently competing standards in the recordable
DVD market, and it is unclear which standard might
eventually be adopted to the exclusion of all others.
In all of these examples, the number of players is
much larger than two. None the less, the simple two-
player game above shares many of the properties of
a more general multi-player game.

(ii) Many Players: Speculative Currency At-
tacks

Multi-player coordination games are of great impor-
tance at the macroeconomic level. For instance,
Cooper (1999) and Cooper and John (1988, 1997)
provide a convincing case for the study of coordina-
tion problems in macroeconomics. A classic coordi-
nation game is provided by the phenomenon of
speculative exchange-rate attacks—a recent ex-
ample of which can be seen in the experience of the
United Kingdom in 1992. Simplifying the model of
Obstfeld (1996), suppose that a group of speculative
traders are considering whether to bet against a
currency. Each trader can ‘short sell’ a single unit
of currency, at a transaction cost of t. If the
currency is devalued, then a trader enjoys a specu-
lative profit of π. If more than a fraction γ̂ of
speculating traders attack (by short selling the cur-
rency) then the currency is devalued: the central
bank ‘caves in’ in the face of the attack. Writing γ
for the actual fraction of speculators choosing to
attack the currency, the payoffs for an individual
speculator are:

 γ ≥ γ̂ γ < γ̂

Attack the currency π – t –t

Do not attack 0 0

For different values of the parameters, the game
may take different forms. When γ ̂ > 1, the currency
is never devalued and may be described as ‘stable’.
Conversely, for γ̂ < 0, the currency is ‘unstable’.
The most interesting region is when 0 < γ̂ < 1 and π
> t. In this case, there are multiple pure-strategy

Nash equilibria. It is an equilibrium for all specula-
tors to attack the currency, and also an equilibrium
for nobody to attack. Such a region is described by
Obstfeld (1996) as one in which the currency is ‘ripe
for attack’.

The knowledge the speculators have concerning the
values of the parameters is critical. With less than
common knowledge it is possible that some agents
believe they are playing a game with a single
equilibrium, while others believe there are multiple
equilibria. Since other agents’ behaviour will depend
upon their assessment of the game they are playing,
an agent’s beliefs about their beliefs will also be
critical. Incorporating this insight, Morris and Shin
(1998, 1999b) analyse the model of Obstfeld (1996)
in a global-game framework (see also Heinemann,
2000). The model is fully discussed and given an
experimental treatment by Frank Heinemann in this
issue, and a strategically equivalent game is studied
in section IV of this Assessment.17

(iii) Payoff Dominance versus Risk Dominance:
Operating System Choice

Personal computers have seen the continued exist-
ence of multiple standards. The Microsoft Windows
and Apple Macintosh operating systems are both in
widespread use. Nowadays, there is extensive com-
patibility—indeed, this paper was written using both.
Nevertheless, there are doubtless advantages to full
compatibility, and different groups have coordinated
on different operating systems. Most of the business
world employs the Microsoft Windows standard,
whereas publishing and graphic-design industries
make extensive use of Apple systems. Windows is,
of course, more widespread than the Apple Mac.
For any new computer-system adopters, the coor-
dination problem might take an interesting form.
Suppose that two researchers are independently to
choose their operating system. Let us further as-
sume that the Apple Mac is technologically superior,
so that when both individuals adopt it a higher payoff
is enjoyed. In contrast, we suppose that Windows,
while inferior, offers a higher security payoff. By
this we mean that, in the absence of coordination,
Windows affords better opportunities for coopera-

16 See Liebowitz and Margolis (1995b), who again argue that it is an urban myth that the inferior technology won the standards
race.

17 Other financial settings exhibit similar features. For instance, bank runs (Diamond and Dybvig, 1983) are studied in a global-
games framework by Goldstein and Pauzner (2000) and debt pricing is considered by Morris and Shin (1999a).
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tion with other computer users. We can represent
this idea with the following strategic form game:

Windows (W) Mac (M)

5 2
Windows (W)

5 4

4 6
Mac (M)

2 6

By inspection, we see that there are two pure-
strategy Nash equilibria (WW and MM). Notice
that in the MM equilibrium each player risks a drop
of 4 in his payoff if his colleague fails to coordi-
nate. On the other hand, a drop of only 1 is
experienced when failing to coordinate on the WW
equilibrium. WW is known as the risk-dominant
equilibrium (Harsanyi and Selten, 1988). Absent
coordination, a tension is observed in this game.
Although it might be considered focal to play the
(superior) MM equilibrium, a player might also play
‘safe’ by choosing Windows.

To see this a little more formally, suppose that a
player has absolutely no idea about the likely actions
of his colleague. In fact, the player assigns 50:50
odds to the relative likelihood of his colleague choos-
ing W versus M. Morris and Shin (2002) call such
beliefs ‘Laplacian’ following Laplace (1824). Given
such beliefs, the expected payoff from Windows is
(5 + 4)/2 = 4.5. The expected payoff from Mac,
however, is (6 + 2)/2 = 4. Thus, given these beliefs,
it is better to choose Windows rather than Mac. In
the context of simple symmetric 2×2 coordination
games, this notion of ‘safety’ corresponds exactly to
the Harsanyi–Selten (1988) definition of risk domi-
nance. Myatt and Wallace, in this issue, give the
more general definition and show how it can be
widely applied.

As will be seen, a close correspondence between
the risk dominance of a Nash equilibrium and the
global-game methodology arises.18 A game which
shares the features of the above operating-system-
choice game is analysed later in this issue by Gavin
Cameron and Chris Wallace. Here, the risk-domi-

nance criterion is applied directly to a game with
many pure-strategy Nash equilibria in order to
select between them. The global-game framework
is suppressed from the analysis, but the ideas remain
the same.

(iv) Asymmetric Equilibria: Tactical Voting

Coordination problems are not limited to economic
settings. In recent parliamentary elections in the
United Kingdom, many supporters of the Labour
and Liberal Democrat parties wished to ensure the
defeat of the Conservative party. In many constitu-
encies, such a defeat required supporters from one
of the parties to vote tactically for the other. A
stylized version of this situation is one in which the
two groups of voters are represented by two differ-
ent players. For payoffs H > L > 0, this situation can
be illustrated by the following strategic-form game:

Labour Lib Dem

H 0
Labour

L 0

0 L
Lib Dem

0 H

The top-left outcome corresponds to a Labour win.
The bottom-right outcome corresponds to a Liberal
Democrat win. Finally, the other outcomes generate
a Conservative win following a ‘split’ in the anti-
Conservative vote.

Once again there are multiple pure-strategy Nash
equilibria. In this case, however, the equilibria are
not Pareto ranked. A Liberal Democrat supporter
(the row player) would prefer to defeat the Con-
servative party via a Liberal Democrat win, while a
Labour supporter (the column player) would prefer
to unseat the Conservatives via a Labour win. Even
with common knowledge of payoffs, there would be
no simple focal equilibrium argument available. In
this issue, David Myatt and Stephen Fisher present
a formal model of tactical voting and, by putting the
game in a global context, obtain a unique equilib-
rium, and hence derive sharp policy implications.

18 Morris et al. (1995) establish a precise relationship between higher-order beliefs in the presence of less than common knowledge,
equilibrium play, and a generalization of risk dominance (p-dominance).
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The Nash equilibria in the simple coordination games
presented here share a common and perhaps unsat-
isfactory feature: the concept does not yield a
unique prediction of play. In the next section, we
employ an illustrative example to demonstrate how
a global-game framework may be used to provide a
solution to the selection problem.

III. THE GLOBAL-GAME APPROACH

Throughout the previous section, it was noted that
players might well be uncertain of their environ-
ment. Technology adopters may be unsure of the
exact benefits generated by each standard. Cur-
rency speculators may be unsure of the true floating
exchange rate following a devaluation (and hence
π), the true state of the government’s resolve, or the
size of the central bank’s currency reserves (both of
which will determine γ̂). Finally, voters in an election
may be uncertain of the exact extent of party
support.

(i) Modelling Common Uncertainty

Formally, such uncertainty may be modelled as
incomplete information over the payoffs of the
game. We might proceed in a number of different
ways. First, the payoffs of individual players might
idiosyncratically vary, but the distribution from which
the payoffs are drawn may be commonly known.
Formally, this would be a model of ‘independent
private types’.

A familiar example helps to explain this approach.
Independent private value (IPV) auctions are the
subject of the celebrated Revenue Equivalence
Theorem (Vickrey, 1981; Myerson, 1981). In an
IPV auction, a bidder knows her own valuation
for an object, and the probabilities of various
valuations for opposing bidders. She does not,
however, know the exact realization of such
opposing valuations. Under such a specification,
a player (or bidder) is uncertain of an opponent’s
payoffs, and hence the action chosen by that
opponent. Knowing the distributions of payoffs,
however, such a player can deduce the game
likely to be played.

In contrast, for richer models of uncertainty, there
will be no common knowledge of the game being
played. Auctions provide another example. In a
(pure) common-value auction, each bidder shares
the same (true) valuation for the object question.
This common value, however, is unknown. Differ-
ent bidders may receive different signals of the
object’s true valuation. This means that the ‘types’
of the players (a type corresponds to an estimate of
the object’s value) might be correlated: if one bidder
receives a strong signal of the object’s value, then it
will be more likely that another bidder will also value
the object highly.19

The global-games approach attempts to pursue
such ‘common value’ logic. The basic idea is that
the payoffs of the game are determined by some
underlying state variable θ. Players then base their
decisions on a signal of this underlying state vari-
able. The signal tells them about θ (and hence their
own payoffs), but it also tells them about the payoffs
of others and, crucially, the signals that others are
likely to have received.

(ii) A Global Coordination Game

This idea is best understood via a return to one of the
simple coordination games considered in section II.
Taking the technology adoption game, and setting H
= L = 1 yields the following simple pure coordination
game:

A B

1 0
A

1 0

0 1
B

0 1

A further example of such a coordination game
might be the choice of word-processing software.
Standards A and B could represent Microsoft Word
and WordPerfect respectively.

We have already noted that this game has two
pure-strategy Nash equilibria, AA and BB. There

19 This idea is closely related to the more precise notion of ‘affiliation’ of players’ signals, examined in Milgrom and Weber (1982).



405

D. P. Myatt, H. S. Shin, and C. Wallace

Figure 1
Expected Payoffs in the Technology Adoption Game

(a) Expected payoffs for the standards adoption game

(b) Expected payoffs varying with the state variable θθθθθ

is also a mixed-strategy Nash equilibrium, in
which players randomize in their choice of ac-
tion.20 If a player randomizes 50:50 between the
two standards, then her opponent will be exactly
indifferent between A and B, and hence willing to
randomize in the same way—and this yields an
equilibrium.

This idea is illustrated in Figure 1(a). We write p for
the probability that an opponent chooses standard
A. Thus, the horizontal axis represents the beliefs
that a player holds about the likely choice of the
other player. The solid line represents the (ex-

pected) payoff that, contingent on these beliefs, the
player would receive from choosing standard A.
Contrariwise, the dashed line the (expected) payoff,
given these same beliefs, that the player would
receive from choosing standard B. Hence, given her
beliefs, a player should choose the standard that
corresponds to the higher of these two lines. Where
the solid and dashed lines cross (at p = 0.5), a player
will be exactly indifferent between the two stand-
ards. Thus, such intersections may be used to
identify mixed strategy Nash equilibria. The ex-
treme points (p = 0 and p = 1) correspond to the
pure-strategy Nash equilibria.

20 A pure strategy involves a player choosing a fixed action. In a mixed strategy, a player outlines a range of pure strategies (specific
actions) and then uses a randomizing device to choose between them. A familiar interpretation (Harsanyi, 1973) is that a player’s
decision is influenced by an independent payoff shock, so that her decision appears random to her opponent.
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With the basic game in hand, we add a state variable
θ. This is a fundamental factor that influences the
payoffs of the players. For this example, the state
variable will take the form of an additional payoff to
standard A, and yields the following strategic-form
game:

A B

1 + θ 0
A

1 + θ θ

θ 1
B

0 1

In the context of word-processing standard choice,
θ might represent the addition of a new feature to
standard A (Microsoft Word). For example, θ might
represent the additional payoff received owing to

the addition of the ‘Office Assistant’ feature of this
program.21 If θ > 0, then this features adds to the
usefulness of standard A. In contrast, when θ < 0,
it detracts from its usefulness. Finally, when θ = 0,
the new feature has no effect, and we return to the
original specification. Notice that this payoff shift is
common to both players.

According to the value taken by the parameter θ, the
game may take a number of different forms. For θ
> 1, it is a dominant strategy to choose standard A.
For θ < –1, it is a dominant strategy to choose
standard B. Finally, when –1 < θ < 1 there are
multiple equilibria. As θ moves within this region, the
mixed-strategy Nash equilibrium shifts accordingly.

This is illustrated in Figure 1(b). Comparing with
Figure 1(a), when θ > 0 the payoff to standard A is
higher, shifting the expected payoff line upwards.
Similarly, when θ < 0, the payoff to standard A is

Figure 2
Different Games Indexed by θθθθθ

Notes: The solid line indicates points that correspond to Nash equilibria for different values of θ. When θ
≥ –1, then it is a pure-strategy Nash equilibrium for both players to choose A, corresponding to p = 1 on
the vertical axis. When θ ≤ 1, it is a pure-strategy Nash equilibrium for both players to choose B,
corresponding to p = 0 on the vertical axis. For –1 < θ < 1, there are mixed-strategy Nash equilibria where
players randomize. For instance, when θ = 0.5, it is an equilibrium for players to choose A with probability
p = 0.25. Doing so ensures that a player is indifferent between A and B, and hence happy to randomize.
The mixed-strategy Nash equilibria are illustrated by the downward-sloping portion of the solid line. Notice
that for θ = 0.5, it is optimal to play A when a player believes that her opponent will play A with probability
greater than 0.25. Thus the downward-sloping line represents a ‘hurdle’ probability. If the opponent is
expected to play A with probability greater than this, then it is optimal for the player to join him in this action
choice. The dotted lines divide the values of θ into regions with multiple and unique equilibria.

21 This is better known as the ‘dancing paper clip’ by many Microsoft Word users, and is the subject of some controversy.
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lower. The probability p* associated with the mixed-
strategy Nash equilibrium corresponds to the inter-
section of the payoff lines. By inspection, if θ > 0,
then p* < 1/2. This means that, when θ > 0, the best
response to 50:50 behaviour on the part of an
opponent is to choose standard A. Similarly, when θ
< 0, and the opponent’s behaviour is completely
random, it is better to choose standard B. Allowing
θ to range over different values changes the nature
of the game, and hence the equilibria. We illustrate
this in Figure 2.

If θ is common knowledge (so that everyone knows
it, everyone knows that everyone knows it, and so
on), then this game may be analysed ‘locally’. If it
is not, then a player must worry that others will view
the game in a different way.

(iii) An Infection Argument

Suppose, for instance, that θ is initially unknown.
When a new feature is introduced to a technology
standard (such as the addition of the Office Assist-
ant to Microsoft Word) users initially are unaware
of its desirability. Suppose, instead, that each player
receives information on the likely value of θ. In the
case of this example, each player might have the
opportunity to inspect standards A and B and evalu-
ate their relative strengths and weaknesses. This
allows a player to form an expectation E[θ], but will
not allow her to obtain perfect knowledge of the
state variable. In other words, there is fundamental
uncertainty about the value of the state variable.
Nevertheless, a player is able to form expectations
about its value.

We now consider a number of different cases.
Suppose that a player concludes that E[θ] > 1. Her
optimal action is simple: she should choose A. She
follows the following logic:

‘My signal leads me to estimate E[θ] > 1. Even if my
opponent were to play B for sure, it would be optimal
to play A. Hence I will play A.’

Suppose instead that E[θ] = 0.99. Inspecting Figure
2, then for fixed θ = 0.99 there would be multiple
equilibria. In the absence of common knowledge,

however, a player will worry that her opponent
believes that E[θ] > 1. If this is the case, then (when
information sources are sufficiently noisy) it will be
best for her opponent to choose A. Her logic is as
follows:22

‘My signal leads me to estimate E[θ] = 0.99. Hence
I should play A if I believe that my opponent will play
A with probability 0.01 (1 per cent) or greater. But
my signal is imperfect, and it may well be the case
that my opponent receives a different signal. It is
quite likely (perhaps more than 1 per cent) that my
opponent’s signal will lead him to conclude that E[θ]
> 1, in which case he will play A for sure. So I should
play A.’

Notice the presence of strategic uncertainty, based
upon a lack of common opinions about θ. If our
player knew that θ = 0.99 (and knew that her
opponent knew), multiple equilibria would be present,
and there would be no such strategic uncertainty.
However, the fact that she does not know that this
is the case means that she suspects that her oppo-
nent may view the game in a way which makes the
play of A a dominant strategy. As long as this suspicion
is sufficiently large (and by inspection of Figure 2 and
the informal argument above, this suspicion need
only exceed 1 per cent), then such suspicion is
sufficient to ensure the definite play of action A.

This is the first step in an infection argument
(Morris et al., 1995; Morris and Shin, 1998). Intui-
tively, the idea is this. A player who believes that θ
≥ 1 will choose A. Hence a player who believes that
θ = 0.99 will suspect that her opponent believes that
θ ≥ 1 and hence will also choose A. Now, a player
who believes that θ = 0.98 will suspect that her
opponent will believe that θ ≥ 0.99 and hence will
choose A as well:

‘My signal leads to me estimate E[θ] = 0.98, and
hence I suspect that my opponent might well believe
that E[θ] ≥ 0.99, in which case he will play A for
sure. This is enough to convince me to play A.’

We can continue this argument iteratively. Alterna-
tively, we could begin the argument at θ = –0.99, and
consider a range of values for which a player will

22 This argument requires the player to place sufficient probability on the event that her opponent’s beliefs are sufficiently
different to hers. If this does not hold, then we may simply use the argument with a higher value for E[θ], say 0.9999.
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Box 1
A Formal Model of Signals

Consider a simple formal model of the ‘signal’ structure described in the main text. Suppose that each
player is originally ignorant of the parameter θ. This is modelled as a diffuse prior. Player i then receives
a signal:

θ
i
 ~ N(θ, σ2).

Conditional on θ, these signals are independently distributed. Bayesian updating yields posterior beliefs:

 θ | θ
i
 ~ N(θ

i
, σ2) and θ

j
 | θ

i
 ~ N(θ

i
, 2σ2).

Notice that σ2 indexes the ‘noise’ in a player’s information sources. For small σ,  players have precise
beliefs about θ, and for σ → 0 there is almost perfect knowledge of θ. Formally, 1/σ2 is known as the
precision of the signal. Using this specification, it is straightforward to observe that a player finds it
equally likely that her opponent will have a signal higher or lower than hers. The logic in the text applies,
and we will obtain a unique threshold rule with θ* = 0. For a fixed state variable θ, a player will choose
A with probability Φ(θ/σ), where Φ(·) is the cumulative distribution function of the standard normal. This
means that the two players will successfully coordinate on A with probability Φ(θ/σ)2. Other coordination
and miscoordination probabilities may be calculated similarly, and are illustrated in Figure 3.

find it optimal to play B, working upwards through
the different possible configurations of the underly-
ing game.

Such an infection argument leads to the conclusion
that a player will play A if and only if θ > θ* for some
value θ*. This is a threshold rule, a cut-off strat-
egy, or a switching strategy. The value θ* is
referred to as the switching point. Of course, this
is a natural strategy to use: it simply says play action
A if and only if there is a sufficiently large payoff
bias towards it.

The threshold θ* used in such a rule will typically be
unique. To see why, suppose that a player receives
a signal that leads her to the belief that E[θ] = θ*.
Since this is the ‘threshold’, she should be exactly
indifferent between A and B. She reasons:

‘I have a signal leading to the belief that E[θ] = θ*.
My opponent will choose A if and only if he believes
that E[θ] ≥ θ*. Thus I must ask “What is the
probability that his belief is more optimistic than
mine?” I have no reason to think that my opponent
is more or less optimistic—and hence I will assign
probability 0.5 to this event.’

Thus, the player will find it equally likely that her
opponent will have beliefs that are more or less

optimistic than hers. To be indifferent between A
and B, therefore, it must be the case that E[θ] = θ*
= 0. In other words, the unique equilibrium threshold
rule (and in fact the unique equilibrium) in this
‘global’ version of the standards adoption game is to
choose A if and only if θ is perceived to be positive.

Interestingly, this argument reveals a close corre-
spondence between the play of a global game and
the risk-dominant (Harsanyi and Selten, 1988) equi-
librium of an analogous game with complete infor-
mation. When θ > 0, the adoption of technology A
is a risk-dominant strategy: It is a best response
when a player assigns 50:50 odds to the play of her
opponent (Figure 2). Such ‘Laplacian’ beliefs might
be held by a naïve individual who has no idea about
the play of her opponent. Nevertheless, it generates
a threshold rule of play that corresponds exactly to
the unique equilibrium way to play this game.

The logic employed here may be applied quite
widely. Moreover, in a range of settings the exact
structure of players’ signals is not critical (Kajii and
Morris, 1997). For the class of 2 × 2 games (such as
the simple coordination game studied here) Carlsson
and van Damme (1993) show that, when players
receive almost perfect private signals of the payoffs,
that play will almost always correspond to the risk-
dominant Nash equilibrium of the underlying game.
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Figure 3
Probabilities of Coordination and Miscoordination

(a) High precision beliefs: σ  = 0.25 (b) Low precision beliefs: σ = 0.75

Frankel et al. (2001) demonstrate that the same
logic holds in larger games, particularly those that
exhibit strategic complementarities.

(iv) Coordination versus Miscoordination

Our argument establishes that players will success-
fully coordinate on the same equilibrium. Within
the context of the example, this does not imply that
they will coordinate on the same technological
standard. The equilibrium strategy specifies a rela-
tionship between a player’s beliefs about θ and the
action taken. These beliefs are based on the infor-
mation available to players, and this information may
differ. Thus, one player may believe that θ > 0,
whereas the other believes that θ < 0, in which case
they will choose A and B, respectively, and mis-
coordinate. This is particularly likely to be true when
the true value of θ is close to zero and when the
players receive relatively imprecise signals about θ.

We illustrate this idea in Figure 3. Based upon the
formal signal specification describe in Box 1, we
calculate the probability that players choose each of
the different possible action profiles. The ‘noise’ in
a player’s information source is indexed by σ. For
larger noise, there is a greater probability of
miscoordination. Thus, the uniqueness of equilib-
rium and the model of a player’s information sources
yield a valuable analysis of policy: they give us the
relationship between the amount of information
available about a technological standard and the
likelihood that agents will successfully exploit net-
work externalities. Of course, the game in play is
directly analogous to the other applications high-
lighted here and in the other papers in this issue,
hence similar intuition will apply in a wider setting.
Importantly, however, we have dealt only with a
situation in which agents are privately informed.
The addition of public information can, as we show
in section V, have a dramatic effect.

Notes: These figures illustrate the probabilities of observing each possible pure strategy profile (that is, a
combination of action choices) in the technology-adoption game. We equip each player with a signal of the
state variable θ, generated from the specification described in Box 1. The parameter σ  indexes the amount
of noise in each signal. When σ  is small, the signal is very precise. The argument in section III(iii)
demonstrates that a player will choose standard A if and only if her signal is biased towards it. In the figures
above, the horizontal axis represents the true value of the state variable θ. For each such θ, we calculate
the probability of different signal realizations, and hence action choices, for both players.
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IV. FUNDAMENTAL UNCERTAINTY
VERSUS STRATEGIC
UNCERTAINTY

The discussion so far underscores the importance of
the interplay between two types of uncertainty—
fundamental uncertainty and strategic uncer-
tainty. Indeed, this distinction could be regarded as
being the organizing principle of all the papers in this
issue.

Fundamental uncertainty refers to uncertainty con-
cerning the payoff-relevant state of nature, denoted
by θ up to now. Strategic uncertainty refers to the
uncertainty concerning the actions of others. This
section demonstrates (somewhat formally) that,
even as fundamental uncertainty becomes smaller
and smaller, strategic uncertainty can remain as
large as ever.

(i) A Global Game with Many Players

We can show this in a simple example with a
continuum of players (extending the two-player
example in section III) who play a public-good
contribution game. Each player has to choose be-
tween contributing to an indivisible public good, and
opting out. For instance, contributing to the public
good might be interpreted as paying a membership
fee to join a club. All those who join the club enjoy
a payoff from a service provided by the club. This
service can only be provided if enough people pay
their fees.

Let κ be the proportion of players who contribute.
The public good is successfully provided when κ
is larger than some critical threshold κ̂. The
consumption value of the public good is 1, but player
i faces a cost c

i
 in contributing to the provision of the

public good. Thus, the payoffs to player i are as
follows:

κ ≥ κ̂ κ < κ̂

Contribute 1 – c
i

–c
i

Opt out 0 0

Notice the similarity to the currency-speculation
game described in section II(ii).23 The difference
is that the contribution cost c

i
 is indexed by the

player i. This is allowed to depend upon a funda-
mental common component (the state variable)
plus noise:

c
i
 = θ + s

i

where θ is the common element in the costs of all
players, while s

i
 is the idiosyncratic ‘payoff shock’

element for player i. The idiosyncratic element s
i
 is

uniformly distributed over the interval [–ε, ε], where
ε is a small positive number. For any two distinct
individuals i ≠ j, s

i
 is independent of s

j
. Finally, let us

suppose that θ itself has a uniform ex-ante distribu-
tion.

On observing his own cost, player i reasons his way
towards the probability density over κ. As a working
hypothesis, player i assumes that all other players
are using the switching strategy around c*, so
that anyone who has cost below c* will contrib-
ute, while anyone with cost above c* will opt out.
In particular, suppose that player i’s cost hap-
pens to be exactly c*. Player i then asks himself
what the cumulative distribution function over κ is,
conditional on c*. For this, he needs to answer the
following question.

‘My cost is c*. What is the probability that κ is less
than z?’  (Q)

This question is the key to our task, since the answer
to question (Q) yields the value of the cumulative

23 This game is rather different from the public-good provision games studied by Myatt and Wallace in this issue. In the current
model, a player must ‘opt in’ in order to benefit from the public good. The specification of Myatt and Wallace supposes that a
player enjoys the public good if κ > κ̂, even when she does contribute herself. This would correspond to payoffs:

κ ≥ κ̂ κ < κ̂

Contribute 1 – c
i

–c
i

Opt out 1 0

The formulation considered here is somewhat easier to analyse, because it exhibits strategic complementarities (the incentive to
contribute monotonically increases with κ).
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Figure 4
Beliefs about the Fraction of Contributors κκκκκ

(a) Density over c
i
 given θ = θ*

(b) Density over θ given c
i
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distribution function of κ evaluated at z. The density
over κ is then obtained by differentiating this func-
tion. The steps to answering question (Q) are
illustrated in Figure 4.

When the common element of cost is θ, the indi-
vidual costs are distributed uniformly over the inter-
val [θ – ε, θ + ε]. The players who contribute are
those whose costs are below c*. Hence:

When do we have κ < z, for a particular choice of
z? This happens when θ is high enough, so that the
area under the density to the left of c* is squeezed
out. There is a value of θ at which κ is precisely
equal to z. This is when θ = θ*, where:

θ* = c* + ε – 2εz.

This is illustrated in Figure 4(a). We have κ < z if and
only if θ > θ*. Thus, we can answer question (Q) if
we can find the probability that θ > θ*.

For this, we must turn to player i’s posterior density
over θ conditional on his cost being c*. This poste-
rior density is uniform over the interval [c

i
 – ε, c

i
 +

ε]. This is because the ex-ante distribution over θ is
uniform and the idiosyncratic element of cost is
uniformly distributed around θ. Figure 4(b) depicts
this posterior density over θ. The probability that θ
> θ* is then the area under the density to the right of
θ*:
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In other words, the probability that κ < z conditional
on cost level c* is exactly z. The cumulative distri-
bution function G(z | c*) is the identity function:

G(z | c*) = z.

The density over κ is then obtained by differentia-
tion:

g(κ | c*) = 1 for all κ.

The density over κ is uniform. The noteworthy
feature of this result is that the constant ε does not
enter into the expression for the density over κ. No
matter how small or large is the dispersion of costs,
κ has the uniform density over the unit interval [0, 1].
Figure 4 reveals the intuition for why ε does not
matter. As ε shrinks, the dispersion of costs shrinks
with it, but so does the support of the posterior
density over θ. The region on the top panel corre-
sponding to z is the mirror image of the region on the
bottom panel corresponding to G(z | c*). Changing
ε stretches or squeezes these regions, but does not
alter the fact that the two regions are equal in size.
This identity is the key to our result.

In the limit as ε → 0, every player’s cost converges
to θ. Thus, fundamental uncertainty disappears.
Everyone’s cost converges to the common element

θ, and everyone knows this fact. And yet, even as
fundamental uncertainty disappears, the strategic
uncertainty is unchanged. The subjective density
over κ is invariant.

(ii) Switching Points and Strategic Uncertainty

Being able to identify the switching point c* reveals
a lot about the strategic uncertainty that the players
face in the game. When c

i
 = c*, player i is indifferent

between contributing and opting out. Denoting by F
(c*) the probability that κ < κ̂ conditional on c

i
 = c*,

the expected payoff to contributing is given by:

(1 – c*)(1 – F(c*)) – c*F(c*) = (1 – c*) – F(c*).

When player i is indifferent between contributing
and opting out, we have:

F(c*) = 1 – c*.

In our case, the density over κ is uniform, so the
switching point c* satisfies:

c* = 1 – κ̂.

Figure 5 illustrates this relationship. The switching
point c* is a decreasing function of the critical mass
κ̂, and takes a particularly simple form.

Figure 5
Switching Point c* as a Function of κκκκκ̂
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V. PUBLIC VERSUS PRIVATE
INFORMATION

When the informational environment of the economy
changes for some reason, both fundamental uncer-
tainty and strategic uncertainty will undergo changes.
The net effect on the equilibrium outcome depends
on the complex interplay between the two types of
uncertainty. This is especially true when the infor-
mation is public, and hence common knowledge
among all players. As well as providing information
on the underlying state θ, public information also
plays the role of conveying information on what
others believe and know. By shifting strategic un-
certainty in this way, public information may have a
big impact on what happens in the game.

We can illustrate this effect informally in the public-
good contribution game above. Each player’s cost c

i

can be seen as a private signal of the common cost
component θ. Suppose, however, that the true θ is
commonly known to be drawn from a density with
mean y. The mean y plays the role of a public signal
on θ. It plays a coordinating role in harmonizing the
expectations of both players on what values of θ are
likely.

Take a simple example. Suppose that y is very high,
but player i’s cost is very low. This player then goes
through the following reasoning.

‘My cost is very low compared to what the mean y
of θ would have suggested. There are two possibili-
ties. Either the true realization of θ is very low, and
my cost is representative, or the true realization of
θ is high, but I have drawn a very low cost. If it is the
former (i.e. θ is high), then it is likely that my
opponents have drawn high cost levels, which means
that they will opt out. However, if it is the latter (i.e.
θ is low), then my opponents will have drawn low
costs, and choose to contribute. On balance, my
signal is very low compared to what I would have
expected θ to be. So, I put more weight on θ being
high, and my opponents opting out. So, I will choose
to opt out.’

So, the mean y of the density from which θ is drawn
plays a crucial role. It affects my beliefs about the
beliefs held by my opponents, and thereby affects
my actions. So, for any cost level drawn by me, I am

more likely to opt out if the mean y is higher. This
additional role for the public signal remains even
when my own private signal is quite precise.

Similar reasoning applies to more general global
games, where the players choose actions that are
more finely variable, rather than the simple two-
action games mentioned so far. In this issue, Amato,
Morris, and Shin examine the impact of public
information in a setting where agents have access to
public and private information. The agents aim to
take actions appropriate to the underlying state, but
they also face a spillover effect arising from other
agents’ actions. Investment decisions, for instance,
will be affected by the buoyancy of the market, as
well as the underlying fundamentals, and thus will be
affected by the actions of other agents. However,
social welfare—the sum of the agents’ payoff
functions—internalizes the spillover effects across
all agents. When there is perfect information con-
cerning the underlying state, the unique equilibrium
in the game between the agents also maximizes the
social welfare function. However, when there is
imperfect information, and the agents have access
to their own private information, the welfare effects
of increased public disclosures turn out to be am-
biguous. It is not always the case that greater
precision of public information is desirable. In many
cases, increased precision of public information is
detrimental to welfare. Specifically, the greater the
precision of the agents’ private information, the
greater is the danger posed by increased provision
of public information of lowering social welfare.

Amato, Morris, and Shin go on to discuss some of
the implications of this result for the conduct of
monetary policy. The heightened sensitivity of the
market has the potential to magnify any noise in the
public information to the degree that public informa-
tion ends up causing more harm than good. If the
information provider anticipates this effect, then the
consequence of the heightened sensitivities of the
market is to push it into reducing the precision of the
public signal. In effect, private and public informa-
tion end up being substitutes, rather than comple-
ments.

Among other things, it not always the case that
frequent and timely publication of economic statis-
tics by government agencies and the central bank is
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Box 2
The Effect of Public Signals

We can illustrate this more formally by changing the example above so that the common element of cost
θ now has a normal distribution with mean y and precision α (i.e. with variance 1/α). Player i’s cost is
given by:

c
i
 = θ + s

i

where the idiosyncratic component of cost s
i
 is drawn from the normal density with zero mean and

precision β. Suppose that all players are following the switching strategy around some point c*, and that
player i’s cost happens to be exactly c*. We can derive this player’s subjective density over κ—the
proportion of players who contribute—by following analogous steps to the discussion above. The
cumulative distribution function over κ can be obtained from the answer to the following question:

‘My signal is c*. What is the probability that κ is less than z?’

The answer to this question will yield G(z | c*)—the probability that the proportion of players who
contribute is at most z, conditional on being at the switching point c*. Given the common cost element
θ, the proportion of players who contribute is:

where Φ(·) is the cumulative distribution function for the standard normal. Let θ* be the common cost
element at which this proportion is exactly z. Thus:

(1)

When θ ≥ θ*, the proportion of players that contribute is z or less. So, the question of whether κ ≤ z boils
down to the question of whether θ ≥ θ*. Conditional on c*, the density over θ is normal with mean:

and precision α + β. Thus, the probability that θ ≥ θ* is the area under this density to the right of θ*, namely:

(2)

This expression gives G(z | c*). Substituting out θ* by using equation (1) and rearranging, we can re-
write equation (2) to give:

Notice that the mean y of θ now enters the expression, whereas previously it did not. The beliefs over
what others do depends critically on what the shared information is.
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desirable. By their nature, economic statistics are
imperfect measurements of sometimes imprecise
concepts, and no government agency or central
bank can guarantee flawless information. This raises
legitimate concerns about the publication of prelimi-
nary or incomplete data, since the benefit arising
from early release may be more than outweighed by
the disproportionate impact of any error.

The challenge for central banks and other public
organizations is to strike the appropriate balance
between providing sufficiently accurate signals to
the private sector so as to allow it to pursue its
goals, but to recognize the inherent limitations of
any set of economic statistics and to guard against
the potential damage done by the imperfections in
the data. This is a difficult balancing act at the best
of times.

VI. A GUIDE TO THIS ISSUE

We have noted that game theory has become an
integral component of the economist’s toolbox. It
allows the application of economic thinking to a
wider variety of social scientific settings. Unfortu-
nately, many games exhibit multiple equilibria. In
addition, conventional interpretations of game theory
assume that all relevant aspects of the game in play
are commonly known by every player. For game
theory to be truly successful, the equilibrium-selec-
tion problem must be addressed and the common-
knowledge requirements must be abandoned.

The theory of global games offers a pragmatic
solution to both of these problems. The common
knowledge requirements are relaxed in a tractable
manner, via the introduction of fundamental un-
certainty. Players are then concerned with the fact
that other players may view a game in a different
way. Such views determine their action choice, and

hence generate strategic uncertainty. This forces
players to think about all the different games that
could be in play—players must think globally.
Perhaps surprisingly, we demonstrate in this paper
that such an approach may yield a unique prediction
of equilibrium play, that corresponds closely to the
play of a naïve player. We obtain, therefore, sharper
predictions following the imposition of more realistic
modelling assumptions.

This approach permits important policy conclusions.
The fact that the equilibrium is unique means that we
can perform unambiguous comparative static analy-
ses. For instance, our technology-adoption game
allows us to assess the probability with which
economic agents will successfully coordinate on the
same standard. We also gain an understanding of
the relationship between public and private informa-
tion sources. Importantly, a public information source
has a critical coordinating effect. Each player knows
that each other player has received the public
information, and hence such information can have a
dramatic impact upon likely behaviour.

With this in mind, the main theme of this issue is the
interplay between uncertainty concerning the un-
derlying fundamentals (the state variable), and
uncertainty over the actions of other interested
parties (strategic uncertainty). The varied subject
matter covered by the papers in this issue bears
testimony to the wide-ranging scope of this inter-
play. We will see in what follows how the formal
techniques of global games can be employed to
uncover the subtle relationship between the two
types of uncertainty—fundamental and strategic—
and how the insights can be applied to policy debates
that may seem (at first blush) rather far removed from
the formalism of games. Needless to say, there are
many more avenues to be explored, and we hope this
issue and the papers within it can serve to spur more
research on the questions addressed here.
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