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Abstract. In an asymmetric coordination (or anti-coordination) game, players
acquire and use signals about a payoff-relevant fundamental from multiple costly
information sources. Some sources have greater clarity than others, and generate
signals that are more correlated and so more public. Players wish to take actions
close to the fundamental but also close to (or far away from) others’ actions. This
paper studies how asymmetries in players’ coordination motives, represented as
the weights that link players to neighbours on a network, affect how they use and
acquire information. Relatively centrally located players (in the sense of Bonacich,
when applied to the dependence of players’ payoffs upon the actions of others)
acquire fewer signals from relatively clear information sources; they acquire less
information in total; and they place more emphasis on relatively public signals.

JEL Classifications. C72, D83, D85. Keywords. Networks, Bonacich Central-
ity, Information Acquisition and Use, Public and Private Information.

Decision makers often seek to take actions close to some unknown state of the world
(a fundamental motive) and also close to (or sometimes far away from) the actions of
others (a coordination motive). An established literature has applied quadratic-payoff
games with these features to understand information use and (more recently) costly
information acquisition in a variety of important economic environments.

This paper contributes a tractable model of situations in which players care asymmet-
rically about coordination. Links on a network represent players’ desires to coordinate
(or not) with their neighbours. Players also wish to match the fundamental state of the
world. This structure allows for two different kinds of asymmetry. Firstly, two different
players may balance differently the payoff component from coordination with the payoff
from matching the state of the world. Secondly, even if two players agree on this bal-
ance they may care differently about the identities of those with whom they coordinate.
For example, in a hierarchical environment a player might care about coordinating with
higher members of that hierarchy but not with lower members.
1The authors thank Andrea Galeotti for early feedback, and Laurent Mathevet and Joanna Franaszek for
excellent discussions. For excellent hospitality and helpful comments, they also thank the organizers and
audiences of the Social Network and Information Conference (Baltimore, April 2017), the Barcelona GSE
Summer Forums (June 2017), the VIII Workshop on Institutions, Individual Behavior and Economic Out-
comes (Sardinia, June 2017), the Ce2 Workshop (Warsaw, July 2017), the 3rd LGTC (Lancaster, November
2017), the RES Annual Conference (Sussex, March 2018), ESSET (Gerzensee, July 2018), and seminars
in Essex, Glasgow, Lund, and Manchester. Finally, the authors thank Alessandro Pavan (as Lead Editor),
an Associate Editor, and two referees for carefully guiding the development of the paper.
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Players learn about the unknown state of the world (and so about likely action choices of
others) via multiple information sources. Each source generates a signal realization for
a player equal to the true state plus a noise term which can be correlated across play-
ers. Such an information source is characterized by two things: the precision of a com-
mon noise component—its underlying “accuracy”—and the precision of a player-specific
component—its “clarity”. Paying more (costly) attention allows a player to reduce the
player-specific noise. This increases both the informativeness of the signal and its cor-
relation with others’ observations. In this context, there is distinction between the “use”
and “acquisition” of information. Specifically, information acquisition refers to the ex-
penditure of costly attention across information sources, where that attention reduces
player-specific noise. Conditional on such acquisition decisions, or indeed in situations
where the information structure is entirely exogenous, information use refers to how
different signal realizations influence players’ final action choices.

Two questions are answered. Firstly: how do the scale and pattern of asymmetric coor-
dination motives influence how players use the information available to them? Secondly:
if information sources are costly, then how do the coordination asymmetries influence
which sources receive attention and the total expenditure on information acquisition?

The answer to the first question is that information use (the response of actions to
signals) is jointly determined by a player’s centrality and the correlation of signal re-
alizations. Centrality refers to how a player’s payoff is influenced by others’ actions,
measured à la Bonacich with a decay parameter equal to the conditional (on the state)
correlation coefficient of signals across players. A player’s (Bonacich) centrality is influ-
enced by both forms of coordination asymmetry: differences in the desire to coordinate,
and differences in the identities of those with whom a player wishes to coordinate. The
key finding is that a bias toward public signals is stronger for more central players.

A clean answer to the second question emerges when players (endogenously) pay to ac-
quire the same subset of the available information sources. Those sources are the easiest
to interpret, even if they have very poor underlying accuracy; equivalently, these are the
sources that are cheapest in the sense that the marginal cost of increasing the precision
of the player-specific noise is lowest. Players then use clearer (or cheaper) signals rela-
tively more: the influence of a signal deviates from its relative accuracy by the product
of the player’s (unweighted) Bonacich centrality and a measure of the signal’s relative
clarity. Strikingly, more central players spend less in total on information acquisition.

Fuller characterizations, including for corner-solution cases in which different players
ignore different information sources, are developed for two commonly studied network
classes. In a two-type core-perhiphery network, central players acquire fewer informa-
tion sources, and make greater use of clearer (rather than more accurate) signals. Sec-
ondly, in a hierarchy in which players seek to coordinate only with those immediately
above them, players further down the chain acquire a subset comprising the clearest
signals acquired by the player(s) above; they acquire less information in total.
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An important message is that relatively clear (and so, endogenously, relatively public)
information has more influence on the players who are more centrally dependent upon
the actions of others in a network; but those players pay less to acquire information.

This paper links a literature which uses network centrality measures in asymmetric
complete-information quadratic-payoff games (Ballester, Calvó-Armengol, and Zenou,
2006) to one which studies the use of dispersed information in symmetric games (Morris
and Shin, 2002; Angeletos and Pavan, 2007), while incorporating the signal technology
of Dewan and Myatt (2008) and Myatt and Wallace (2012). Almost all existing analyses
of quadratic-payoff games with dispersed information specify symmetric players. The
distinction of this paper is that it admits the tractable analysis of an arbitrary pattern
of coordination motives with two kinds of asymmetry: players have different aggregate
coordination motives and also care differently about with whom they coordinate.2

The model and its full-information benchmark solution are described in Section 1. The
equilibrium is characterized in Section 2, with sharp results reported when players ac-
quire and use the same set of signals. A benchmark result in Section 3 reports that
asymmetric players act symmetrically when they share a common aggregate coordina-
tion motive. Two particular formulations are then discussed: “two-type” (for example,
core-periphery) networks in Section 4 and a hierarchy structure in Section 5. Both cases
admit the possibility that an information source is used by some players but not others.
Concluding remarks and a discussion of related literature are contained in Section 6.

1. A QUADRATIC-PAYOFF COORDINATION GAME ON A NETWORK

1.1. Players and Payoffs. Each player m ∈ {1, . . . ,M} simultaneously chooses a real-
valued action am ∈ R. For a pair of players m and m′, γmm′ is the (relative) influence of
the action of player m′ upon the payoff of player m, which is

um ≡ constant −
󰁫
(1− βm)(am − θ)2 + βm

󰁛
m′ ∕=m

γmm′(am − am′)2
󰁬
. (1)

θ is a common real-valued “fundamental” target, γmm′ ≥ 0,
󰁓

m′ ∕=m γmm′ = 1, and βm

(which can be positive or negative) is the aggregate influence of others on player m.3

This is a quadratic-payoff game in which players wish be close to the fundamental θ

and close to (or far away from) the actions of others. Assume |βm| < 1 for all m, so that
coordination (or anti-coordination) motives are not overly strong.4

2Two existing papers incorporate player asymmetry: Myatt and Wallace (2018) allows for the first kind
of asymmetry, but not for the second, in a specific price-setting model; Leister (2017) allows for general
player asymmetry, but restricts to a single perfectly private signal. See Section 6 for a fuller discussion.
3A player wishes either to coordinate with (βm > 0) or against (βm < 0) all others. This is straightforward
to relax. Indeed, γmm′ ≥ 0 is assumed for expositional purposes only: it plays no role in any of the proofs.
4The specification of (1) is not particularly restrictive. See Section 1.3 for a fuller discussion.
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FIGURE 1. A Three-Player Network

Each directed link reflects the dependence of one player’s payoff (at the root of the
arrow) upon coordination with another player’s action (at the head of the arrow).
Here, the elements of Γ satisfy γ23 = γ31 = γ ∈ [0, 12 ] and γ21 = γ32 = 1− γ ∈ [12 , 1].
The players’ concerns for coordination are β1 = 0 and β2 = β3 = β respectively.
Player 1 does not care about coordination, and so γ12 and γ13 are omitted.

The parameters γmm′ represent the weights on the links in a directed graph in which
each player is identified with a different node. The adjacency matrix for this network is

Γ =

󰀵

󰀹󰀹󰀹󰀹󰀷

γ11 γ12 · · · γ1M

γ21 γ22 · · · γ2M
...

... . . . ...
γM1 γM2 · · · γMM

󰀶

󰀺󰀺󰀺󰀺󰀸
,

where γmm = 0 for all m. The mth row captures the relative influence of others’ actions
on the payoff of m. The absolute influence also includes m’s desire to coordinate. Writing
β = (β1, . . . , βM)′ and diag[β] for the diagonal matrix with mth diagonal element βm, the
adjusted (for the strengths of the coordination motive) adjacency matrix is

Γ̄ ≡ diag[β]Γ =

󰀵

󰀹󰀹󰀹󰀹󰀷

β1γ11 β1γ12 · · · β1γ1M

β2γ21 β2γ22 · · · β2γ2M
...

... . . . ...
βMγM1 βMγM2 · · · βMγMM

󰀶

󰀺󰀺󰀺󰀺󰀸
.

Γ̄ incorporates two sources of player asymmetry. Firstly, players may be asymmetrically
connected: players m and m′ may care relatively differently about some third player m′′,
so γmm′′ ∕= γm′m′′ . Secondly, even if connections are symmetric and equal (γmm′ = 1/(M−1)

for all m and m′) then players may care differently about coordination: βm ∕= βm′ .

A three-player example is displayed in Figure 1. The nodes are the three players. Ad-
jacent to a node is the player’s aggregate coordination concern: β1 = 0 (Player 1 cares
only about the fundamental) while β2 = β3 = β > 0 (Players 2 and 3 care equally, in
aggregate, about coordination). There is an asymmetry between those who care about
coordination and those who do not. A further form of asymmetry concerns the network
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of interdependencies. Setting 0 ≤ γ ≤ 1
2
, Player 3 cares mostly about coordinating with

Player 2 (because γ32 = 1 − γ ≥ γ = γ31) whereas Player 2 cares mostly about coordina-
tion with Player 1 (because γ23 = γ ≤ 1−γ = γ21). Player 3 cares more (relative to Player
2) about coordinating with another coordinator. The adjusted adjacency matrix is

Γ̄ =

󰀵

󰀹󰀷
0 0 0

β(1− γ) 0 βγ

βγ β(1− γ) 0

󰀶

󰀺󰀸 .

1.2. Centrality. βm (the sum of the mth row of Γ̄) measures m’s direct concern for coor-
dination. However, the effective overall concern for coordination depends on the players
with whom m wishes to coordinate. If m wishes to match those who also have strong
coordination motives then this amplifies m’s incentive to take a coordinated action. The
final strength of the desire to coordinate depends on the entire network and on the cen-
trality of a player within it. This paper uses notions of “Bonacich” centrality that follow
those employed by Ballester, Calvó-Armengol, and Zenou (2006) and others.5

Definition (Bonacich Centrality). Given a network described by Γ̄, player m’s Bonacich
centrality with decay parameter ρ is the mth entry of

b = [I− ρΓ̄]−11 =
󰁛∞

k=0
ρkΓ̄k1, where 1 = (1, . . . , 1)′.

Briefly, if Γ̄ is a symmetric matrix containing only 1s and 0s then the mth element of
ρkΓ̄k1 counts the paths of length k that begin (or end) at player m from every other
player. Such paths “decay” (are discounted) by ρk. If the matrix contains numbers other
than 1 and 0, each path is further discounted by the weight of each component link.

This definition easily extends to allow different players (or nodes on a network) to have
different exogenous influences, summarized in a vector α. Doing so, the vector of α-
weighted Bonacich centralities (with decay parameter ρ) is bα = [I− ρΓ̄]−1α.

Bonacich centrality is readily illustrated using the example of Figure 1, for which

b =
1

1− β2γ(1− γ)

󰀳

󰁅󰁃
1− β2γ(1− γ)

1 + β + β2γ2

1 + β + β2(1− γ)2

󰀴

󰁆󰁄 . (2)

Given that γ ≤ 1
2
, it is straightforward to confirm that b3 ≥ b2 > b1. Hence, Player 3 is

the most central in terms of coordination dependency upon other players’ actions.

1.3. A Full Information Benchmark. A natural benchmark case is when θ is known.

Each player m chooses am to maximize (1). The maintained assumption |βm| < 1 is
sufficient for concavity, and first-order conditions yield unique best-replies:

Best reply of m = am = (1− βm)θ + βm

󰁛
m′ ∕=m

γmm′am′ . (3)

5Bonacich (1987) developed many notions of centrality. Nevertheless, the definition here has become
popularly associated with Bonacich. It is an affine transformation of one appearing in Bonacich (1987).
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am = θ for all m uniquely satisfies this system: everyone perfectly coordinates, and so
play is completely symmetric.6 This is by design: the objective is to study the impact
of asymmetries on information use and acquisition, and so it is instructive to abstract
away from asymmetries in actions that would occur in a full-information world.7

The symmetry of play holds because players care about matching the same fundamental
θ and the actions of others, rather than scaled versions of these target variables.8 The
asymmetry in the payoff specification arises because players balance the fundamental
and various coordination motives (one for each other player) differently. This allows for
two sources of asymmetry. Firstly, Γ represents a directed network with weighted links
(its elements are not restricted to take values in {0, 1}) and it need not be symmetric (the
influence of player m′ on m need not match that of m on m′). Secondly, the aggregate
influence of others’ actions is not identical across players: βm ∕= βm′ , in general. These
parameters (representing the aggregate coordination motive) can be either positive or
negative (and so actions can be either strategic substitutes or complements).

A feature of the specification (1) is that the coefficients applied to the quadratic-loss
terms sum to one: 1 − βm + βm

󰁓
m′ ∕=m γmm′ = 1. This is not restrictive: a player’s payoff

can be scaled up or down (so scaling the coefficients) until this equality holds. Indeed,
all results on information use apply even if this sum-to-one equality is dropped. It does
matter, however, for the analysis of costly information acquisition, which is described
just below: scaling players’ payoffs would also scale up or down information-aquisition
costs, and such costs are assumed (again just below) to be symmetric across players.

1.4. Information. The information structure follows closely that introduced (to politi-
cal science) by Dewan and Myatt (2008) and (to economics) by Myatt and Wallace (2012).

Players do not know θ, but share a common prior that θ ∼ N(x0,κ
2
0). Many of the results

reported here focus, without loss of generality and for expositional simplicity, on the
improper prior limit where κ2

0 → ∞.9 Players have access to n sources of information
about θ. Each player receives a signal of θ from information source i ∈ {1, . . . , n}, where

Signal i received by player m = xim = θ + ηi + εim (4)
6(3) may be rewritten in matrix notation: a = (I−Γ̄)θ1+Γ̄a, where Γ̄ = diag[β]Γ and where a = (a1, . . . , aM )′

is the vector of players’ actions, 1 is the M×1 vector of 1s, and I is the M×M identity matrix. a = θ1 if (I−
Γ̄) is invertible. |βm| < 1 is sufficient; it ensures that the strategic complementarity (or substitutability)
of actions does not overwhelm the incentive to take an action close to the fundamental.
7The specification (1) is a variant of the payoffs found in Ballester, Calvó-Armengol, and Zenou (2006).
In that paper, for the setting described here, equilibrium actions are proportional to weighted Bonacich
centralities (see their Remark 1, p. 1409). The formulation of (1) exactly counteracts the centrality of the
player, so that all players choose the same action. The purpose of this paper is to understand how such
variations in network position affect the use and acquisition of information. Section B.1 in Appendix B
explores more fully the relationship between the specification here and that of their paper.
8This contrasts with a recent paper by Myatt and Wallace (2018) which studies price competition between
suppliers with asymmetrically sized portfolios of differentiated products. In that paper, the actions are
prices and the fundamental state of the world θ is a common demand shifter. This applied environment
generates a payoff structure equivalent to the one here, but where different players apply different scal-
ing factors to θ (for example: larger suppliers seek to set prices that respond more strongly to demand
conditions) and so the equilibrium is no longer symmetric in a full-information world.
9A prior θ ∼ N(x0,κ

2
0) is equivalent to adding an (n+ 1)st signal i = 0 with parameters κ2

0 and ξ20 = 0.



7

and where the noise terms are all independent. ηi is a source of noise common across
players with ηi ∼ N(0,κ2

i ). The associated precision 1/κ2
i is the “accuracy” of the infor-

mation source. It represents noise inherent in the source itself, perhaps attributable to
errors made when the signal is “sent”. εim, on the other hand, is an idiosyncratic noise
component, attributable to errors made by the “receiver” of the signal. The associated
precision may be (to some extent at least) under the control of the player. Assume that

εim ∼ N(0, ξ2im) where ξ2im =
ξ2i
zim

.

The precision 1/ξ2i is the underlying “clarity” of information source i. zim measures the
(costly) attention player m pays to signal i. Two different specifications are considered.

Firstly, player i might simply receive each signal (free of charge). Setting zim ≡ 1 for all i
and m (more generally, fixing zim) each signal is characterized by its accuracy and clarity
or, equivalently, by its overall precision ψi and correlation across players ρi, where

ψi =
1

κ2
i + ξ2i

and ρi =
κ2
i

κ2
i + ξ2i

.

More correlated signals are more public (if ρi = 0 observations are independent; if ρi =
1, then they are common) and so ρi indexes a signal’s “publicity”. The focus in this
specification is on information use: how different signals (characterized by ψi and ρi, or
equivalently κ2

i and ξ2i ) influence the actions taken by differently positioned players.

Secondly, zim ≥ 0 might be a choice variable for player m. Prior to choosing an action
(conditional on received information), player m chooses how much attention to pay to
signal i. zim = 0 is interpreted as ignoring the signal altogether, and results in a com-
pletely uninformative (infinite variance) realization of xim. Attention is costly: let

Cm(z1m, . . . , znm) =
󰁛n

i=1
zim for all m (5)

be that linear cost which is deducted from um. This admits a sampling interpretation dis-
cussed by Myatt and Wallace (2015, p. 483) and justified formally by Han and Sangiorgi
(2018). Pragmatically, the linearity admits explicit solutions for information acquisition.

Under this specification, the information sources are equally costly. However, the at-
tention paid to a source enters into the signal structure only via the relationship ξ2im =

ξ2i /zim. Scaling up or down the cost of acquiring any particular information source i is
equivalent to scaling up or down the clarity parameter ξ2i . Hence, treating all informa-
tion sources as equally costly is without of generality. In essence, zim is to be interpreted
as the expenditure on signal i by player m. With this interpretation, clearer signals
(lower ξ2i ) correspond to cheaper information sources.

Note that the parameters of information acquisition, such as ξ2i or equivalently the mar-
ginal cost of attention, do not vary across the player set. By design, the information
technology is exogenously symmetric; and so any asymmetries arise endogenously via
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players’ different choices of attention zim. This means that the exclusive sources of asym-
metry arise from the specification of um in (1). This rules out situations in which some
players find it particularly easy to observe specific information sources.10

The focus for this specification is information acquisition, particularly on which differ-
ent signals are acquired by differently positioned players on the network. Note that the
correlation (and precision) of each signal i is determined endogenously in this latter set-
ting: each signal’s publicity can differ across players and is an equilibrium phenomenon.

2. INFORMATION USE, INFORMATION ACQUISITION, AND CENTRALITY

This section characterizes equilibrium information use first by abstracting from the ac-
quisition problem (so, setting zim ≡ 1 for all i and m) and then by solving subsequently
for equilibrium information acquisition and use when zim is chosen optimally for each i.

2.1. Information Use with Exogenous Signals. The (Bayesian Nash) equilibrium
considered is linear in signal realizations.11 In particular, consider the affine strategies

am = w0mx0 +
󰁛n

i=1
wimxim,

where wim is the weight that player m places on signal i, and w0m is the weight on
the prior.12 Substituting these strategies into (1), and using xim from (4), the expected
payoff E[um] = constant−(1−βm) E[(am−θ)2]−βm

󰁓
m′ ∕=mγmm′ E[(am−a′m)

2] can be readily
calculated in terms of the weights wim; the proof of Lemma 1 reports the full expression.
This generates a game in which each player m chooses n+ 1 weights to maximize E[um].

Concavity of E[um] is guaranteed by the assumption |βm| < 1. Differentiating with re-
spect to the weight placed on the prior mean yields M equations

(1− βm)
󰀓󰁛n

i=0
wim − 1

󰀔
+ βm

󰁛
m′ ∕=m

γmm′

󰀓󰁛n

i=0
(wim − wim′)

󰀔
= 0,

which hold if and only if
󰁓n

i=0wim = 1 for all m: each player’s action choice is a weighted
average of the player’s signal realizations and the prior mean.

Turning to the use of those signals, the n×M first-order conditions are

wjm(κ
2
j + ξ2jm)− βm

󰁛
m′ ∕=m

γmm′wjm′κ2
j = cm,

10A more general cost function Cm(zm) =
󰁓n

i=1 ζimzim allows the marginal cost ζim of attention paid to
source i to vary across players. Now consider a situation with three information sources in which players
m and m′ satisfy ζim = ζim′ , ζjm < ζjm′ , and ζkm > ζkm′ . This can be interpreted as a situation in which
source j is delivered in the native language of player m, source k is delivered in the native language of
player m′, and source i is some neutral lingua franca. In this situation, source i could play a role by
giving a signal of common clarity for the players. Such a situation is ruled out by the specification here,
and is left for future work. The authors thank a referee for suggesting such a situation as a possible
interpretation of an information source with common clarity for different players.
11This is without much loss of generality. In the model of Dewan and Myatt (2008), any equilibrium
involving strategies which are bounded above and below by linear strategies is itself linear.
12For x0 ∕= 0 any further additive constant term in this affine strategy can be captured via w0mx0. If
x0 = 0 then the constant can be re-instated, with no substantive changes to the results.
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where cm is a player-specific constant. Lemma 1 uses the precision and correlation
notation (thereby assuming zim ≡ 1 and hence ξ2im = ξ2i for all i and m).

Lemma 1 (Characterization). The unique linear equilibrium satisfies
󰁓n

i=0 wim = 1 for
each m. The weight each player m places on information source i satisfies

wim = βm

󰁛
m′ ∕=m

γmm′wim′ρi + cmψi, (6)

where cm is an (equilibrium determined) player-specific constant. If the prior is diffuse
then all weight is placed on the signals: limκ2

0→∞ w0m = 0 and so limκ2
0→∞

󰁓n
i=1 wim = 1.

Allowing the prior to become diffuse (so that κ2
0 → ∞) the weight on the prior mean must

fall to zero (since otherwise a player’s payoff would diverge) and so, with such a diffuse
prior, a player’s action is a weighted average of the n signals.

For expositional simplicity, the paper now proceeds with a diffuse prior, so
󰁓n

i=1 wim = 1.
This is without loss of generality: a proper prior is equivalent (from the perspective of
players) to an additional (n+ 1)st signal i = 0 with ξ2i = 0.

Rewriting the conditions of (6) in the vector notation of the previous section provides
some general insight into how information is used by networked players. Define

wi ≡ (wi1, . . . , wiM)′ and c ≡ (c1, . . . , cM)′ ⇒ wi = ρiΓ̄wi + ψic.

Since ρi ≤ 1 for all i, |βm| < 1 is sufficient for the inverse (I − ρiΓ̄)
−1 to exist. Using the

equality
󰁓n

i=1 wi = 1 to solve for c generates the following proposition’s characterization
of equilibrium weights (see Appendix A for all proofs).

Proposition 1 (Equilibrium Information Use). There is a unique linear equilibrium in
which the vector of weights players place on their observations of signal i satisfies

wi = ψi[I− ρiΓ̄]
−1

󰁫󰁛n

j=1
ψj[I− ρjΓ̄]

−1
󰁬−1

1.

Looking across the player set, the use of a signal is proportional to a player’s Bonacich
centrality with decay parameter ρi. The use of a more public signal (with a higher
correlation coefficient) decays more slowly through the network.13 The influence of a
signal is increasing in its publicity when the game is one of strategic complements (for
instance, when the elements of Γ̄ are all strictly positive). This effect is compounded for
players who are the most centrally influenced by the actions of others.

As an illustration of the results so far, consider the example of Figure 1, and set γ = 1
2

to make the algebra tractable. Applying Proposition 1, the weights are

wi1 =
ψi󰁓n
j=1 ψj

and wi2 = wi3 =
ψi󰁓n
j=1 ψj

1 + ρiβ/2− βρ̄

1− ρiβ/2
,

13Note that A−1 =
󰁓∞

k=0(I − A)k for any invertible matrix A, where A0 ≡ I. Using A = I − ρjΓ̄ and
re-substituting for the constants c, the weights may be written wi = ψi[I − ρiΓ̄]

−1c = ψi

󰁓∞
k=0(ρi)

kΓ̄kc.
Now Γ̄k captures the influence of the weights chosen by all k-distant players on the network. Thus the
influence of others’ use of signal i decays through the network more slowly the higher is ρi.
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where the constant ρ̄ is a weighted average of the ρis:

ρ̄ =
󰁛n

j=1

ψjρj
1− ρjβ/2

󰀡󰁛n

j=1

ψj

1− ρjβ/2
.

Player 1 uses precision weighting. Players 2 and 3 (these players are symmetric given
that γ = 1

2
) care about the signal’s publicity. In particular, wi2 = wi3 > wi1 if and only if

ρi > ρ̄, so that the ith signal is more public than average.

2.2. Endogenous Information Acquisition and Use. With endogenous information
acquisition, each player jointly chooses an acquisition policy zm ∈ Rn

+ and (focusing on
strategies for which actions are linear in signal realizations) the weights to place on the
signals. Setting ξ2im = ξ2i /zim, for zim > 0, the first-order condition for wim is

wim

󰀕
κ2
i +

ξ2i
zim

󰀖
− βm

󰁛
m′ ∕=m

γmm′wim′κ2
i = cm,

where cm is again a player-specific constant.14 The first-order condition for zim is simply
w2

imξ
2
i /z

2
im = 1 (again, when it’s positive). Rearranging yields an analogue to Lemma 1.

Lemma 2 (Equilibrium Properties). There is a unique linear equilibrium in which the
weight player m places on information source i satisfies

wim = βm

󰁛
m′ ∕=m

γmm′wim′ +
cm − ξi

κ2
i

, and zim = ξiwim (7)

is the attention paid to i, for all i such that wim > 0 (equivalently zim > 0); wjm = zjm = 0

otherwise. Here, cm is an (equilibrium determined) player-specific constant.

The expressions in (7) may be applied directly, and are useful for the two settings dis-
cussed in Sections 4 and 5. In general, different players may listen to different sets of
signals so that zim = 0 but zim′ > 0 for some i and m ∕= m′. Indeed, this will be the case
for many interesting examples. However, a particularly clean result is available when
all the players listen to the same (possibly strict) subset of the n signals.

To this end, suppose that zim > 0 ⇔ zim′ > 0 for all i and m ∕= m′, so that all players
listen to precisely the same set of signals. Define N󰂏 = {i : zim > 0 for all m}: the non-
empty subset of {1, . . . , n} containing all the signals that receive positive attention. For
all i ∈ N󰂏 the first-order conditions in (7) hold, and

󰁓
i∈N󰂏

wim = 1 for all m.

A special case is when all players listen to all signals. A sufficient condition for this is
that no player is too central, or that the least clear signal is not too unclear.15 Given
that clarity can be re-interpreted as the cost of an information source (as discussed
14This is a slight abuse of notation: cm differs in general from the constant identified in Section 2.1.
However, it is convenient for expositional purposes to use the same symbol for these constants.
15Precisely, zim > 0 for all i and m (so that all sources receive positive attention) if

max
m

bm <

󰀗󰁛n

i=1

ξmax − ξi
κ2
i

󰀘−1

(8)

where bm is the (unweighted) centrality of m; the mth element of the vector [I− Γ̄]−11, and ξmax = maxi ξi.
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toward the end of Section 1.4) this holds if the most costly information source is not too
expensive. Scaling down the costs of all sources is sufficient to achieve this.

Proposition 2 applies more broadly when information sources are partitioned into those
that are universally acquired and those that are universally ignored.16

Proposition 2 (Equilibrium Information Acquisition). Suppose that, in equilibrium,
any signal that is acquired by some player is acquired by everyone. The signals acquired
are from the clearest (lowest ξi) sources. The weight placed on i by a player m is higher
than its relative accuracy if and only if the information source is clearer than average:

wi =
1

κ2
i

󰀫
1󰁓

j∈N󰂏
1/κ2

j

1− (ξi − ξ̄󰂏)[I− Γ̄]−11

󰀬
, where ξ̄󰂏 =

󰁓
j∈N󰂏

ξj/κ
2
j󰁓

j∈N󰂏
1/κ2

j

, (9)

for all i ∈ N󰂏. The weight’s deviation from the signal’s relative accuracy is proportional
to the product of the difference between signal i’s clarity and the average clarity of all the
acquired signals and the player’s unweighted Bonacich centrality.

To understand this proposition, consider ξi = ξ̄󰂏 for all i. Applying the solution in the
proposition, wim ∝ 1/κ2

i so that play is symmetric and all players use their signals in
proportion to the underlying accuracy of the information source. Given that they do so,
the optimality of information acquisition from (7) implies

zim = ξiwim = ξ̄󰂏wim ∝ 1

κ2
i

⇒ 1

κ2
i + (ξ2i /zim)

∝ 1

κ2
i

,

and, moreover, all signals share the same correlation coefficient. With equally clear
information sources, signal precisions are (endogenously) proportional to underlying in-
formation accuracies, and all signals are equally public.17 This reinforces the use of
information in proportion to the underlying accuracy of the corresponding source.

Now consider ξi < ξj. Beginning with a situation in which signals are accuracy-weighted,
less attention is devoted to the clearer signal simply because it is easier to understand.
Nevertheless, the overall (endogenous) clarity of the message from source i is now rela-
tively greater than from source j. It is optimal to place more emphasis on source i. This
explains the presence of the term −(ξi − ξ̄󰂏) in the solution reported (9).

The term −(ξi − ξ̄󰂏) is multiplied by the vector of Bonacich centralities [I− Γ̄]−11, which
says that the effect of greater relative clarity is amplified for more central players. The
16The symmetric case (see Section 3) satisfies the conditions of Proposition 2; maxm bm can be replaced
with 1/(1− β) in the condition (8). Equivalently: the coordination motive is not too large.
17Clearer signals are endogenously more public in the sense of having higher correlation coefficients in
equilibrium. Note that the correlation between the observation of source i by m and m′ is

ρimm′ = κ2
i

󰀗󰀕
κ2
i +

ξ2i
zim

󰀖󰀕
κ2
i +

ξ2i
zim′

󰀖󰀘− 1
2

.

In the equilibrium described in this section by (7), and in those to follow, zim = ξiwim when positive. But,
from (9), wim = fm(ξi)/κ

2
i when positive, where fm is a decreasing (player-specific) function of ξi. It is

straightforward to check that ρimm′ > ρjmm′ ⇔ ξi < ξj if both m and m′ acquire i and j. If either m or m′

does not acquire some i, then ρimm′ = 0. As will be seen throughout, players acquire a subset consisting
of the most clear signals. So, in equilibrium, the clearer the signal the more endogenously public it is.
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reason is that clearer sources are more public, and an increase in centrality shifts weight
toward more public (and so clearer) information sources. Naturally, there are equilib-
rium considerations too: if others shift toward the clearer source then those who wish
to coordinate with them (a desire which is captured by Γ̄) face an enhanced incentive to
place more weight on and devote more attention to the clearer information. This logic
underpins the solution reported in Proposition 2. That solution applies whether the ac-
tion choices of players are strategic complements (βm > 0, in which case the centralities
are larger and the emphasis on clearer sources is stronger) or are strategic substitutes
(βm < 0, in which case the effect is weaker). An illustration is provided for players with
symmetric coordination motives (βm = β for all m) in Proposition 5 below.

2.3. Total Information Acquisition. Beyond the weights attached to the various sig-
nals in use, total information acquisition (measured by Zm =

󰁓n
i=1 zim, and so corre-

sponding to total cost paid for the information acquired) is amenable to analysis. Noting
that zim > 0 only if i ∈ N󰂏, and using the first-order condition for such zim in (7), pre-
multiply (9) by ξi and sum over i ∈ N󰂏. For every i, defining the M -dimensional vector

zi ≡ (zj1, . . . , zjM)′, and hence Z ≡
󰁛n

i=1
zi = (Z1, . . . , ZM)′,

yields immediately the last proposition of this section.

Proposition 3 (Total Information Acquisition). Suppose that, in equilibrium, any signal
that is acquired by some player is acquired by everyone. Then, player m’s total informa-
tion acquisition is decreasing in the Bonacich centrality of that player. In fact,

Z = ξ̄󰂏1− [I− Γ̄]−11
󰁛

j∈N󰂏

(ξj − ξ̄󰂏)
2

κ2
j

. (10)

Consider a game with strategic complementarities (every element of Γ̄ is positive). Re-
ferring to Proposition 2, and looking across the signals in positive use, the clearer a
signal i (the lower ξi) the more weight is attached to it. Indeed, signals that are clearer
than average (as measured by ξ̄󰂏) are acquired and used more than implied by their
relative accuracy (as measured by 1/κ2

i /
󰁓

j∈N󰂏
1/κ2

j ). This effect is compounded by the
player’s position in the network: a player who is more central departs more from using
signals according to their relative accuracy than one who is less central. More central
players favour relatively clear (endogenously relatively public) information sources.

On the other hand, Proposition 3 says that more central players spend relatively little
on information acquisition. They are influenced more by others and so they place more
importance on coordination. This rebalances their use of information (meaning the in-
fluence of a signal on a player’s action choice) toward more public information sources.
Such public information sources are those that are clearer. A player faces a stronger
incentive to improve the precision of signals that are used more. For a central player,
the heavily used signals are clearer and so are (equivalently) cheaper to acquire; less
costly attention is required to achieve any particular precision of observation. The focus
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on sources that are less costly reduces central players’ total expenditure on costly infor-
mation acquisition. Note that this does not say that they acquire less information, but
instead simply says that they spend less by using the cheaper sources.

2.4. Corner Solutions in a Three-Player Example. A feature of the equilibrium
characterized by (7) is that in general a signal i may be acquired (and used) by player
m, but not by another player m′. The features of asymmetry in network position that
would drive such behaviours are purposefully ignored in the above. To understand how
and why different players might use different information (and what features of those
sources determine which signals get acquired), two important network structures are
explored in Sections 4 and 5. Before moving on to these cases, some insight may be
gained from the three-player example of Figure 1.

For this three-player example, consider an environment with two information sources,
and order those sources such that ξ1 < ξ2. For γ < 1

2
, the centralities of the players

satisfy b3 > b2 > b1 (see (2) and Figure 1). Under some parameter configurations (for ex-
ample, if ξ2−ξ1 is not too large) all three players use both information sources. Applying
Proposition 2, the use of the less-clear signal by the moderately central player is

w22 = ŵ22 where ŵ22 =
1

κ2
2

󰀥
1

󰁓2
i=1 1/κ

2
i

− b2(ξ2 − ξ̄)

󰀦
and ξ̄ =

󰁓2
j=1 ξj/κ

2
j󰁓2

j=1 1/κ
2
j

.

If this second information source becomes even less clear, so that ξ2 rises, then eventu-
ally the most central player 3 stops acquiring and using it altogether. In fact, if

b2 <

󰀗
ξ2 − ξ1
κ2
1

󰀘−1

< b3

then w23 = 0 (player 3 uses only the first signal) but w22 > 0 and w21 > 0.18 However, the
explicit solution for w22 (other information-use coefficients are in Appendix B) becomes

w22 =
1

κ2
2

󰀥
1

󰁓2
i=1 1/κ

2
i

− 1− βγ + β

1− βγ
(ξ2 − ξ̄)

󰀦
(1− βγ) < ŵ22.

For this illustrative corner-solution case, where one player ceases to acquire (and there-
fore use) a signal, other (less central) players reduce their use of that signal away from
the centrality-driven solution of Proposition 2. Further analyses of corner solutions of
this type (in which certain information is only acquired by a subset of players) are stud-
ied in Sections 4 and 5. Nevertheless, there is a class of asymmetric games for which
such corner solutions do not apply. These are studied next.

3. A SYMMETRIC EQUILIBRIUM IN AN ASYMMETRIC GAME

The general structure (captured by Γ̄) admits a great deal of asymmetry. Typically,
therefore, information use and acquisition differ across players. However, there is an
important class of asymmetric networks for which the equilibrium is symmetric.
18If this holds then the sufficient condition of (8) reported in Footnote 15 fails.
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3.1. A Symmetric Benchmark. Suppose that players care equally about coordination:
βm = β for all m, and so Γ̄ = βΓ. No assumption is made on the connections γmm′ and so
very asymmetric networks are permitted. Nonetheless, players share the same Bonacich
centralities. Explicitly, an application of the centrality definition yields:

b =
󰁛∞

k=0
ρkΓ̄k1 =

󰁛∞

k=0
(βρ)kΓk1 =

󰀓󰁛∞

k=0
(βρ)k

󰀔
1 = (1/(1− ρβ))1.

A rough intuition here is this. Given that aggregate coordination motives do not vary,
there is no direct reason for players to behave differently. If a player expects others to
behave symmetrically, then the identities of others with whom a player wishes to coordi-
nate (determined by Γ) does not matter. This suggests that the equilibrium is symmetric,
which is tied to the property that players share the same Bonacich centralities.

To establish this symmetry property formally, and focusing on information use (acquisi-
tion is considered below), insert the symmetric weights into (6):

wi = β
󰁛

m′ ∕=m
γmm′wiρi + cmψi = βρiwi + cmψi ⇒ cm = c ∀m ⇒ wi =

cψi

1− βρi
.

c can be solved by summing these weights across i, and using the equality
󰁓n

i=1 wi = 1.
The following proposition summarizes these facts using the clarity-accuracy notation.

Proposition 4 (Information Use and Symmetric Coordination Motives). If players share
the same aggregate coordination motive, so that βm = β for all m,

wim = wi ∀m where wi =
1

(1− β)κ2
i + ξ2i

󰀱󰁛n

j=1

1

(1− β)κ2
j + ξ2j

. (11)

In this benchmark case, players use information in proportion to its precision-weighted
publicity, a result familiar from Myatt and Wallace (2014, Proposition 1), for instance.

Now allow players to acquire information endogenously. Applying the first-order condi-
tions in (7) from Lemma 2 and inserting wim = wi and zim = zi for all m and i, whenever
zi > 0 ⇔ wi > 0, then

wi = βwi +
c− ξi
κ2
i

and zi = ξiwi.

So, for i ∈ N󰂏 ≡ {j : zj > 0} ⊆ {1, . . . , n}, equilibrium weights are given by

wi =
c− ξi

(1− β)κ2
i

, whereas for j /∈ N󰂏 wj = 0.

The constant cm = c (for all m) can be found by summing over i ∈ N󰂏. Once again, using
the average clarity notation from Section 2.2, c = ξ̄󰂏 + (1− β)/

󰁓
i∈N󰂏

1/κ2
i .

Proposition 5 (Information Acquisition with Symmetric Coordination Motives). If play-
ers share the same aggregate coordination motive then wim = wi and zim = zi, where

wi =
1

κ2
i

󰀫
1󰁓

j∈N󰂏
1/κ2

j

− ξi − ξ̄󰂏
1− β

󰀬
and Z = ξ̄󰂏 −

1

1− β

󰁛

j∈N󰂏

(ξj − ξ̄󰂏)
2

κ2
j

(12)

for i ∈ N󰂏 and Zm = Z is the total information acquisition for player m. Moreover, N󰂏 =

{i : ξi < ξ̄󰂏 + (1 − β)/
󰁓

j∈N󰂏
1/κ2

j} is uniquely defined. The players use a (possibly strict)
subset of the signals, consisting of the clearest. Signals j /∈ N󰂏 are ignored: wj = zj = 0.
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The parallels between these results and those presented in Propositions 1–3 are plain.
The earlier propositions may be applied directly to obtain (11) and (12). Using the ex-
pression for the inverse of (I− Γ̄) derived from the discussions in Footnote 13,

(I− Γ̄)−11 =
󰁛∞

k=0
Γ̄k1 =

󰁛∞

k=0
βkΓk1 =

󰁛∞

k=0
βk1 =

1

1− β
1.

The third equality holds because Γ is a row-stochastic matrix and so Γ1 = 1. Thus (9)
and (10) directly imply (12). A similar exercise can be conducted for (11). As noted
above, βm = β for all m gives every player the same Bonacich centrality.

A property of the symmetric equilibrium (this is also true in the presence of asymme-
tries) is that the clearest (lowest ξi) information sources are acquired. A clearer source
is equivalent to one that is relatively cheap to acquire. (A lower marginal cost in the
linear cost function is equivalent to a lower value of ξi.) Such cheap-to-acquire sources
are used even if they do not accurately reflect the state of the world (that is, if κ2

i is high).

3.2. Asymmetric Coordination Motives. A necessary condition for asymmetric be-
haviour is that players differ in their desire to coordinate. This section describes briefly
one situation in which such differences are present.

To proceed, suppose that γmm′ = 1/(M − 1) for all m ∕= m′ so that there are no asym-
metries in the connections between players. However, suppose that the aggregate co-
ordination motives of players differ: 0 < β1 < β2 < . . . < βM .19 Given that aggregate
coordination motives are the only source of asymmetry, it is unsurprising that they de-
termine the players’ centralities, which satisfy b1 < b2 < · · · < bM for any 1 ≥ ρ > 0.

With this in hand, earlier results apply immediately. Proposition 2 notes that the equi-
librium weight placed on an endogenously acquired signal deviates from that signal’s
relative accuracy according to its relative clarity and according to the relevant player’s
Bonacich centrality. Similarly, Proposition 3 can also be applied directly.

Corollary (to Propositions 2 and 3). Suppose that players differ only in their aggregate
desire to coordinate, and consider an equilibrium in which players’ acquire and use the
same set of information sources. A player with a stronger coordination motive makes
more use of relatively clear information, and acquires less information overall.

4. A CORE-PERIPHERY NETWORK

That (at least two) players are differently influenced by others in aggregate is a neces-
sary condition for asymmetry in the network structure to feed through into asymmetric
information use and acquisition across players. Equivalently, players must have differ-
ent Bonacich centralities. This section and the next present general formulations for two
such networks, commonly found in the literature and analytically tractable, to explore
how asymmetries in centrality affect asymmetries in information use and acquisition.20

19The restriction to coordination (rather than anti-coordination) shortens proofs and speeds exposition.
20The three-player example of Figure 1 is a special case of both: setting γ = 1

2 yields a simple core-
periphery network, while γ = 0 (or γ = 1) generates a simple three-player hierarchy.
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FIGURE 2. The Star Network with M − 1 Spokes

Lines represent undirected links from m to m′ with βmγmm′ = βm′γm′m. If there is
no line then γmm′ = 0. Players {1, . . . ,M − 1} on the spokes care about the actions
of other spoke players only through an indirect connection via the hub player {M}.

This section studies information use and acquisition across a two-type network, where
the specification also allows for significant asymmetry within each group of types.

4.1. A Two-Type Network of Players. Partition the players into two subsets A and
B of size MA and MB = M −MA respectively. Suppose that these subsets satisfy

βm =

󰀻
󰀿

󰀽
βA m ∈ A

βB m ∈ B
,

󰁛

m′∈A

γmm′ =

󰀻
󰀿

󰀽
ωAA m ∈ A

ωBA m ∈ B
, and

󰁛

m′∈B

γmm′ =

󰀻
󰀿

󰀽
ωAB m ∈ A

ωBB m ∈ B
.

These requirements say that two members of a group share the same aggregate concern
for coordination with groups A and B respectively. For example, if players m and m′ are
both members of group A, then

󰁓
m′′∈B βmγmm′′ =

󰁓
m′′∈B βm′γm′m′′ . Similar claims apply

when referring to intra-group coordination with other members of A. Furthermore,
members of each group share the same aggregate coordination motive. Nevertheless,
the opportunity for further substantial asymmetry remains.

This definition encompasses many important network structures. For instance, core-
periphery networks fall under this specification, as do, therefore, star networks.

For a star network, suppose that player M is the hub player, connected to all other
M − 1 players, who in turn are connected only to player M . The usual specification
has βmγmm′ = βm′γm′m if m and m′ are connected, and γmm′ = 0 otherwise. This fits the
definition above with A = {1, . . . ,M − 1}, B = {M}, and with aggregate coordination
motives satisfying βB = (M − 1)βA. Figure 2 illustrates such a specification.

However, the definition is broader than that: general core-periphery networks fit the
construction here, as do many other network forms.21 The key advantage of networks
21See Goyal (2007, Chapter 4, p. 80) for an example with MA = 8 players on the periphery, MB = 4 in
the core, and βmγmm′ = βm′γm′m for connected players. The “windmill” networks of Dziubiński and Goyal
(2017, p. 345) fall into this definition (at least, those with the same number of players in each clique do).
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with this two-type structure is that solving for the weights (on signals) essentially boils
down to inverting a 2× 2 matrix, for which an explicit solution is available.

4.2. Information Use. Players’ information use is symmetric within each group. To
see why, consider a strategy profile that satisfies intra-group symmetry. Now consider
(for example) a member of group A. This player notes that all members of group B act in
the same away. Thus, the desire to coordinate with all of them according to the relevant
row of the adjacency matrix Γ̄ is equivalent to placing weight βAωAB on one representa-
tive member of group B; the same is true when thinking about co-members of group A.
From this, it follows that all members of A will choose best replies symmetrically.

Given that this is the case, the coordination motives of the M players within Γ̄ can be
summarized via the much simpler 2× 2 adjacency matrix Ω̄ where

Ω̄ ≡
󰀥

βAωAA βAωAB

βBωBA βBωBB

󰀦
.

Hence (I− ρΩ̄)−11 reports the Bonacich centralities of the two player groups.

The relative use of (exogenously provided) information by members of the two groups
is determined by how public each signal is: whether one group rather than the other
makes more use of a signal depends upon whether the correlation coefficient of that
signal exceeds a critical value. The proof of Proposition 6 identifies this critical value ρ̂.

Proposition 6 (Relative Information Use by the Player Types). If players in B care
more about coordination than players in A, so that βB > βA, then players in B place more
weight on a signal if and only if it is relatively public: wiA < wiB ⇔ ρi > ρ̂ for some ρ̂.

The intuition is as before: relatively central players are those with stronger coordination
motives, and they find that relatively public information is more useful for coordination
because correlated signals reveal more about the actions of others.

4.3. Information Acquisition. The intuition above carries over to the case when play-
ers choose which signals (and how much of each) to acquire. Indeed, it is reinforced and
compounded by the endogenous acquisition decisions made by the players.

A first observation is that either players in A acquire a subset of those signals acquired
by players in B or vice versa. An examination of the weight given to each signal i which
is acquired in (9) provides some general intuition. Take the most central player. For this
player ξi is sufficiently small such that the term inside the brackets in (9) is positive.
Thus, it must be positive for all other players. Essentially, if the most central player
uses a signal, so does everyone else. Of course, this argument ignores the fact that
the equilibrium conditions in (9) apply only when every player acquires the same set of
signals. However, the broad intuition carries over to the two-type setting.

Define the set of signals acquired in equilibrium by players in A and B respectively as
NA = {i : ziA > 0} and NB = {i : ziB > 0}, where ziA = zim for m ∈ A and similarly for ziB.
Similarly, define total acquisition as ZA = Zm for m ∈ A and ZB = Zm for m ∈ B.
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Proposition 7 (Information Acquisition in a Two-Type Network). Consider a two-type
network with βB ≥ βA: members of B care more about coordination than members of A.

(i) Players in B acquire a (possibly weak) subset of the signals acquired by players in A:
NB ⊆ NA. This subset consists of the clearest (lowest ξi) signals in NA.

(ii) Players in B place more weight on relatively clear signals (wiA ≤ wiB if and only if ξi is
sufficiently small). If NB = NA then wiA ≤ wiB ⇔ ξi ≤ ξ̄ where ξ̄ is the accuracy-weighted
average of ξi across the (common) set of acquired information sources.

(iii) Players in B acquire less information than players in A: ZA ≥ ZB.

Not only do more central players place relatively high weight on relatively public sig-
nals, but they will also ignore entirely signals which are insufficiently clear. They do so
even in circumstances when other players on the network pay attention to such (rela-
tively private) information sources. In addition, the fact that more central players care
more about the actions of others and less about the fundamental θ per se leads them not
just to acquire fewer signals, but to acquire less information overall.

To see these propositions in action, recall the star network illustrated in Figure 2. Con-
sider a simple example with just n = 3 information sources, with ξ1 < ξ2 < ξ3, so that
information sources are ordered by their clarity: 1 is the clearest. Suppose further that
ξ3 > ξ1 + (1 − βA)κ

2
1. This is sufficient for neither players on the spokes (m ∈ A) nor the

hub player (m ∈ B ≡ {M}) to acquire a signal from source 3. Clarity determines whether
a signal is acquired, and in this case source 3 is insufficiently clear for acquisition.

Suppose, on the other hand, that ξ2 < ξ1 + (1 − βA)κ
2
1. Then certainly players in the

spokes will acquire a signal from the second source. Proposition 7 can be applied: βB =

(M−1)×βA and so NB ⊆ NA. Whether the signals acquired by the hub player constitute
a strict subset of those acquired by the spoke players or not depends critically upon M .
In particular, if M is sufficiently small, so that the hub player is “not too central” then
NB = NA and the players acquire the same set of signals. However, if

M > M󰂏 ≡ 1 +
κ2
1 − (ξ2 − ξ1)

βA[βAκ2
1 + (ξ2 − ξ1)]

> 2

then w2B = z2B = 0: the hub player M does not acquire a signal from information source
2. Instead, the hub player places all weight on the single clearest signal from source 1.
In this case, the equilibrium values of the weights for spoke players in A are

w1A =
βAκ

2
1 + κ2

2 + (ξ2 − ξ1)

κ2
1 + κ2

2

, w2A =
(1− βA)κ

2
1 − (ξ2 − ξ1)

κ2
1 + κ2

2

, and w3A = 0.

As mentioned, w1B = 1 and w2B = w3B = 0. Thus NB = {1} ⊂ NA = {1, 2}. Now
consider total information acquisition (or equivalently, the total cost paid for acquired
information) by the different types of player. From (7), ZB = ξ1 trivially. ZA = ξ1w1A +

ξ2w2A and so it is straightforward to verify that ZA > ZB (so long as w2A > 0). Spoke
players acquire more information than the hub player does.
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FIGURE 3. The Hierarchy Network with Two Members per Group

Arrows represent directed links from m to m′ with γmm′ > 0. If there is no arrow
then γmm′ = 0. Members of each (two player) group care about the actions of those
within their group and those of a single player in the level directly above only.

5. A HIERARCHY NETWORK

This section turns attention to a hierarchy network in which most players share the
same aggregate concern for coordination, but nevertheless acquire and use information
differently owing to their positions within the hierarchy.

5.1. The Hierarchy. Suppose players are arranged in a linear hierarchy. Player 1 (at
the top) does not care about coordination: β1 = 0. Others share the same coordination
motive: βm = β for all m > 1. Player 2 is connected to player 1 only, player 3 is connected
to player 2 only, and so on: for m > 1, γmm′ = 1 if m′ = m−1 and is zero otherwise. This is
a directed and asymmetric network. Players “further down the chain” care more about
coordination, not directly, but rather through their indirect connections to those above.

Although the results of this section will focus on the above story for simplicity, a more
general network structure can be accommodated. In particular, suppose that each level
in the hierarchy contains multiple players. Level ℓ ≥ 2 contains (g + 1)ℓ−2 groups, each
containing g+1 players whose payoffs depend upon the actions of all others within their
group and exactly one player from the level above, ℓ − 1. In level 1, there is a single
player (player 1) who is unconnected to any other player.

A simple version is illustrated in Figure 3. Here, g = 1, γmm′ = 1
2

for all connections, and
each group member is linked to exactly the same player in the level above. The payoff
weighting attached to members of ones own group versus that attached to the player in
the higher level may in general be different. For instance, set γmm′ = γ if m and m′ are
connected and in the same level and γmm′ = γ′ if m′ is the player from the level above
m to whom m is linked (such that the normalization

󰁓
m′ ∕=m γmm′ = 1 continues to hold).

Else γmm′ = 0. Note that it does not matter precisely to which player (or players) in level
ℓ− 1 the players from a single group in ℓ are connected: the equilibrium weights are the
same for members of each level so long as the aggregate influence the actions of those
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above has upon them is the same. Nor will it matter precisely how many groups there
are in any given level, nor their size: again, the aggregate influence the group’s actions
have upon each of its members is the only feature that matters.

This framework can be generalized even further with no important qualitative conse-
quences for the results.22 Here, then, the focus will be on a simple case where each level
is identified with a single player: g = 0 and ℓ = m. Note that other than player 1, who
has β1 = 0, each player m > 1 has coordination preference parameter βm = β. In this
sense, a hierarchy constitutes a minimal departure from symmetry.

5.2. Information Use. Applying the first-order conditions of (6) in Lemma 1,

wjm = βwj(m−1)ρj + cmψj for m > 1,

and wj1 = c1ψj for m = 1. Summing over j for m = 1 immediately yields

c1 =
1󰁓n

i=1 ψi

and so wj1 =
ψj󰁓n
i=1 ψi

≡ ψ̂j.

Player 1, entirely unaffected by those players below on the hierarchy, uses precision-
weighted information. The objective is to explore information use for those players lower
down the hierarchy. Players sufficiently far down the hierarchy behave as if the network
was symmetric (see Proposition 4). Essentially, such players have the same centrality.

Proposition 8 (Information Use in a Hierarchy). Consider a hierarchy: (i) β1 = 0 and
(ii) for m > 1, βm = β and γmm′ = 1 only if m′ = m− 1 ≥ 1 and is zero otherwise. Then

wj1 =
1

κ2
j + ξ2j

󰀱󰁛n

i=1

1

κ2
i + ξ2i

and lim
M→∞

wjM =
1

(1− β)κ2
j + ξ2j

󰀱󰁛n

i=1

1

(1− β)κ2
i + ξ2i

Player 1 uses each signal in proportion to its precision. Players far “down the chain” use
weights approximately proportional to the precision-weighted publicity of each signal.

Moving down the chain of the hierarchy is equivalent to following a chain of iterative
best replies, which naturally converges (further down the chain) to the equilibrium use
of information in a game where all players share the same coordination motive.

5.3. Information Acquisition. Players within the hierarchy typically acquire differ-
ent sets of signals. Without loss, order the information sources by clarity so that ξ1 <

ξ2 < . . . < ξn, and define Nm = {i : zim > 0} ⊆ {1, . . . , n}. Further, let nm = max{i ∈ Nm}.
nm ≤ n is the least clear signal that player m acquires and uses.

The objective is to show that Nm = {1, . . . , nm} ⊆ Nm−1 for all m > 1: that is, lower
players in the hierarchy acquire (weakly) fewer signals than higher players, and that
these consist of precisely the nm clearest (lowest ξi) signals. Certainly player 1 acquires
a subset consisting of the clearest signals. To see this, note that from (7), wj1 = (c1−ξj)/κ

2
j

22Appendix B.3 provides a recipe for doing so in the case where each level ℓ > 1 contains several groups of
g+1 players. Aside from a technicality or two, the proofs involve nothing more than a change of variables.
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for any j ∈ N1. Now c1 is constant across i, so if for any j > 1, ξj < c1 then ξj−1 < c1. But
then wj−1,1 > 0 and hence zj−1,1 > 0. Indeed, c1 can be directly calculated from (7) and

󰁛
i∈N1

wi1 = 1, so c1 =
1 +

󰁓
i∈N1

ξi/κ
2
i󰁓

i∈N1
1/κ2

i

.

The proof to the next proposition, which characterizes the acquired sets of signals for
each player, confirms N1 is uniquely determined. Thus N1 = {1, . . . , n1} as required.
Players “further down” the hierarchy acquire fewer signals. In fact, they acquire subsets
of signals acquired by players above them, consisting of the most clear: player m chooses
to acquire the clearest nm signals only, and nm+1 ≤ nm for all m.

Proposition 9 (Information Acquisition in a Hierarchy). For a hierarchy network:

(i) Each player acquires a (weak) subset of the signals acquired by the player above. These
are the most clear: for all m ≥ 1, there is a unique nm such that wjm > 0 ⇔ zjm > 0 for all
j ≤ nm and wjm = zjm = 0 for all j > nm with nm+1 ≤ nm.

(ii) Players lower in the hierarchy acquire (weakly) less information: Zm+1 ≤ Zm.

(iii) Player m+1 places more weight on signal j than player m does, so that wjm+1 > wjm,
and acquires more of j, so that zjm+1 > zjm, if and only if j is clear enough.

(iv) If players m and m+ 1 use the same signals then player m+ 1 places more weight on
signal j than player m (and acquires more of it) if and only if j is clearer than average.

Claim (i) states that players further down the chain use a weak subset of the signals
used by those above. This subset can be strict, as a simple example suffices to show.

Suppose that there are n = 3 sources ordered in terms of their clarity ξ1 < ξ2 < ξ3. Let

ξ1 < ξ1 +
κ2
1

1 + β
< ξ2 < ξ1 + κ2

1 < ξ3.

(Note β < 1, so this chain of inequalities is feasible.) With this example, n1 = 2 and
nm = 1 for all m ≥ 2. The weights on the signals are

w11 =
κ2
2 + (ξ2 − ξ1)

κ2
1 + κ2

2

, w21 =
κ2
1 − (ξ2 − ξ1)

κ2
1 + κ2

2

, and w31 = 0.

Furthermore, w1m = 1 and w2m = w3m = 0 for all m ≥ 2. The top player in the hierarchy
ignores information source 3, but acquires signals from sources 1 and 2. Lower players
acquire a signal from source 1 only (and trivially must place weight 1 upon it, therefore).
Total acquisition, equivalently the total cost paid for information, is given by

Z1 = ξ1
κ2
2 + (ξ2 − ξ1)

κ2
1 + κ2

2

+ ξ2
κ2
1 − (ξ2 − ξ1)

κ2
1 + κ2

2

and Zm = ξ1,

for all m ≥ 2. A quick calculation confirms that Z1 > Zm ⇔ ξ1 < ξ2, as assumed. Thus, as
claim (ii) of the proposition guarantees, the player at the top of the hierarchy acquires
more information (equivalently, pays more for information) than those below.
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This reemphasizes the main message: more central players (in this case, those further
down the hierarchy) acquire less information, acquire relatively clear (or public) infor-
mation, and use relatively clear (or public) information more intensively. The set of
sources they acquire is a subset of those acquired by less central (higher) players.

6. RELATED LITERATURE AND CONCLUDING REMARKS

This paper links two strands of literature concerning quadratic-payoff games: studies
of information use, after Morris and Shin (2002); and studies of coordination with net-
worked player dependencies, following Ballester, Calvó-Armengol, and Zenou (2006).

The contribution of Morris and Shin (2002) generated a large literature investigating
information use in quadratic-payoff coordination games and its welfare consequences.
Such models have been applied to investment games, business cycles, oligopolies, po-
litical leadership, and financial markets (Angeletos and Pavan, 2004, 2007; Myatt and
Wallace, 2014, 2015, 2018; Dewan and Myatt, 2008, 2012; Allen, Morris, and Shin, 2006).
The typical setting is one in which all players receive public (perfectly correlated) and
private (completely uncorrelated) signals about the fundamental.

Relative to a public-and-private specification, this paper allows for the acquisition and
use of multiple information sources. The structure was introduced by Dewan and Myatt
(2008, 2012), extended by Myatt and Wallace (2012), and has been applied extensively
(Myatt and Wallace, 2014, 2015, 2018; Pavan, 2016; Galperti and Trevino, 2018). It
allows players (at some cost) to alter both the precision and correlation properties of
their information sources. Other work has restricted to binary acquire-or-not decisions
(Hellwig and Veldkamp, 2009) or to choosing the precision of a single private signal
(Llosa and Venkateswaran, 2013; Colombo, Femminis, and Pavan, 2014; Leister, 2017).

Almost all related papers specify symmetric players. A novelty here is that the model
admits a very general class of asymmetries in players’ preferences for coordination, rep-
resented by the links in a network. Ballester, Calvó-Armengol, and Zenou (2006) studied
a general class of quadratic-payoff games where players’ coordination preferences are
described in this way.23 In a complete information setting, players’ (weighted Bonacich)
centralities determine their equilibrium actions.24 Only a very small selection of recent
papers allow for some form of asymmetry when information is dispersed. Three are
identified here: Myatt and Wallace (2018), Leister (2017), and Denti (2017).

Myatt and Wallace (2018) studies a price-setting oligopoly with differentiated products,
uncertain linear demand conditions, asymmetrically sized firms, and the information
structure used here. Their applied setting allows for players who care differently about
23For textbook treatments see Goyal (2007) and Jackson (2008). The structure has been extended by
Belhaj, Bramoullé, and Deroı̈an (2014), and used widely. For example, König, Tessone, and Zenou (2014)
studied the stochastic stability of equilibria in a network-formation game in which payoffs take this form.
For applications to pricing in which the network reflects consumption externalities, see Fainmesser and
Galeotti (2016a,b). None of these papers studies the acquisition and use of dispersed information.
24This connects an older literature (Katz, 1953; Bonacich, 1987) on indices of network centrality to equi-
librium play in a broad class of games. This connection extends to situations with dispersed information.
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coordination (specifically: larger firms control more products, and care less about the
prices of others) but do not care differentially about others. In essence, their model is
one in which βm ∕= βm′ for two players m and m′, but where γmm′ = 1/(M − 1).

Leister (2017) gives each player costly control of the precision of only a single “perfectly
private” signal and assumes enough structure to ensure an interior equilibrium. On the
other hand, Leister (2017) admits a wider range of cost functions; considers precision
choices that are publicly observed prior to play; and evaluates welfare. His messages
are complementary, and it remains an open (and welcome) question as to whether his
conclusions carry over to a more general information structure.

Each networked player in Denti (2017) designs a signal’s correlation structure with the
signals received by others and the state. The cost of acquiring such information takes
the entropy form of the rational inattention literature (Sims, 2003, 2006). As here,
Bonacich centrality combines with—now optimally chosen under entropic costs—signal
correlation to determine the network effects of information acquisition. As a result of
the non-convexities generated by entropic costs, however, and unlike here, multiplicity
may arise (as in the symmetric example of Myatt and Wallace, 2012, Section 9).

In this paper, information acquisition is separate from the network itself. This contrasts
with work in which the network describes the communication links between players
(Calvó-Armengol and de Martı́, 2007, 2009). For example, Herskovic and Ramos (2015)
studied a network-formation game with players who each have access to uncorrelated
signals. Rather than (as here) investigating the impact of a network structure on in-
formation use, that paper (and much of the literature from which it proceeds) explores
the impact that information use has on network structure. Interestingly, publicity is
key here also: players with particularly “good” information attract others who link with
them. The more who link, the more public the signal becomes, the more useful it is to
others trying to coordinate.25 Thinking of such players as “opinion makers”, Herskovic
and Ramos (2015) relate their result to the origins of leadership. In an asymmetric set-
ting, Calvó-Armengol, de Martı́, and Prat (2015) study communication in which players
can control the precision with which they send and receive signals to and from others (at
some cost).26 Again, players exogenously receive only a single, private, signal; although
the aggregated information is endogenously public via the communication process.27,28

25So, in Herskovic and Ramos (2015), the better informed become the more influential. This contrasts
with the “tyranny of the uninformed” result of Golub and Morris (2017) who provide an extended dis-
cussion of the distinction between these two results. It is interesting to compare these results with the
observation of the current paper, that relatively centrally located players tend to focus on fewer, relatively
public, signals. In other words, those who are more influenced by others acquire less information.
26Interestingly, players are unable to ignore entirely another player’s signal by assumption. The current
paper, the paper by Herskovic and Ramos (2015) discussed above, and the work of Currarini and Feri
(2015), who study bilateral information sharing on networks, suggest this may not be entirely innocuous.
27Similar questions relating to information transmission in networks are addressed by Hagenbach and
Koessler (2010) and Galeotti, Ghiglino, and Squintani (2013). In those papers, communication is modelled
as “cheap talk” and payoff asymmetries enter through biases on the fundamental motive (rather than via
the coordination motive). The focus is, therefore, upon the potential for credible communication.
28In related work, Galeotti and Goyal (2010) present a model in which the players’ payoffs depend on
information acquired from their neighbours. Their focus is on the outcome of a network formation process
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Information use by networked players has also been studied in different strategic set-
tings. A recent paper by Leister, Zenou, and Zhou (2017) studies an exchange-rate attack
environment (so, a binary-action coordination game) with a common unknown payoff-
relevant variable (θ). Players receive a single costless (uncorrelated, conditional on θ)
signal about θ before choosing their action. The focus is on the cut-off equilibria typi-
cal of exchange-rate attack problems and not on information acquisition and use, but
players’ payoff-dependencies are also represented by a network structure.

Relative to the social value of information literature, this paper studies a general class
of preference asymmetries via the network on which players are arranged. Relative
to the literature on games and communication in networks, the model here focuses on
the acquisition and use of information sources independent of the network structure it-
self. Instead, the model incorporates a rich correlation structure over multiple different
sources whose publicity and precision are affected by the acquisition decisions of the
players themselves. A key contribution is to identify a connection between information
acquisition (and use), the signal’s publicity, and the players’ centrality in the network.

APPENDIX A. PROOFS OF LEMMAS AND PROPOSITIONS

Proof of Lemma 1. A first step is to show that the expected payoff of player m is

E[um] = constant − (1− βm) E[(am − θ)2]− βm
󰁛

m′ ∕=m
γmm′ E[(am − a′m)2]

where E[(am − θ)2] =
󰀓󰁛n

i=0
wim − 1

󰀔2
x20 +

󰀓󰁛n

i=1
wim − 1

󰀔2
κ20 +

󰁛n

i=1
w2
im(κ2i + ξ2im)

and E[(am − am′)2] =
󰀓󰁛n

i=0
(wim − wim′)

󰀔2
x20 +

󰀓󰁛n

i=1
(wim − wim′)

󰀔2
κ20

+
󰁛n

i=1
(wim − wim′)2κ2i +

󰁛n

i=1
w2
imξ2im +

󰁛n

i=1
w2
im′ξ2im′ .

With linear strategies of the form stated in the main text,

am − θ =
󰀓󰁛m

i=1
wim − 1

󰀔
(θ − x0) +

󰁛m

i=1
wim(ηi + εim) +

󰀓󰁛m

i=0
wim − 1

󰀔
x0.

All but the final term are zero in expectation, and all terms are uncorrelated. Hence, squaring
and taking the expectation yields E[(am − θ)2]. A similar procedure yields E[(am − a′m)2].

Differentiating with respect to w0m,

∂ E[(am − θ)2]

∂w0m
= 2

󰀓󰁛m

i=0
wim − 1

󰀔
x20 = 2(w̄m − 1)x20

∂ E[(am − am′)2]

∂w0m
= 2

󰀓󰁛n

i=0
(wim − wim′)

󰀔
x20 = 2(w̄m − w̄m′)x20.

where w̄m ≡
󰁓n

i=0wim and similarly for w̄m′ . Hence:

−∂ E[um]

∂w0m
= 2x20

󰁫
(1− βm)(w̄m − 1) + βm

󰁛
m′ ∕=m

γmm′(w̄m − w̄m′)
󰁬
= 0.

These M equations solve to yield w̄m = 1 for all players.

when equilibrium play of the game is itself network-dependent (using the networked public-good provision
game of Bramoullé and Kranton 2007, later generalized in Bramoullé, Kranton, and D’Amours 2014). A
recent experimental treatment of these network formation issues can be found in Goyal, Rosenkranz,
Weitzel, and Buskens (2017), while Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (2010) investigate
a variant in which players have incomplete information about the structure of the network.
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Next, differentiate with respect to wjm and evaluate at w̄m = 1 to obtain

∂ E[(am − θ)2]

∂wjm
= −2w0mκ20 + 2wjm(κ2j + ξ2jm)

and
∂ E[(am − am′)2]

∂wim
= −2 (w0m − w0m′))κ20 + 2(wjm − wjm′)κ2j + 2wjmξ2jm

=
∂ E[(am − θ)2]

∂wjm
+ 2w0m′κ20 − 2wjm′κ2j

⇒ −1

2

∂ E[um]

∂wjm
= −w0mκ20 + wjm(κ2j + ξ2jm) + βm

󰁛
m′ ∕=m

γmm′ [w0m′κ20 − wjm′κ2j ].

Setting this equal to zero yields the condition stated in the lemma, where

cm = w0mκ20 − βm
󰁛

m′ ∕=m
γmm′w0m′κ20.

Uniqueness follows from the invertibility of the matrix described in the next proof. □

Proof of Proposition 1. |ρiβm| < 1 for all m and so [I − ρiΓ̄] has full rank for all i. Using vector
notation, the first-order condition of (6) in Lemma 1 can be written as wi = ψi[I− ρiΓ̄]

−1c. Sum-
ming over signals gives 1 =

󰁓n
j=1 ψj [I − ρjΓ̄]

−1c. There is a unique solution to the optimization
problem if and only if

󰁓n
j=1 ψj [I − ρjΓ̄]

−1 is invertible: c = [
󰁓n

j=1ψi[I − ρjΓ̄]
−1]−11.29 Then, as

required, the equilibrium weights may be written in vector notation as

wi = ψi[I− ρiΓ̄]
−1

󰁫󰁛n

j=1
ψj [I− ρjΓ̄]

−1
󰁬−1

1 = ψi

󰁛∞

k=0
(ρi)

kΓ̄k

󰀗󰁛n

j=1
ψj

󰁛∞

l=0
(ρj)

lΓ̄l

󰀘−1

1,

where the second equality follows the discussion in Footnote 13, and which further justifies the
discussion immediately following the proposition. □

Proof of Lemma 2. Differentiating E[um] with respect to wim, and setting to zero, gives exactly
the expression in the main text above Lemma 1. Differentiating with respect to zim gives
w2
imξ2i /z

2
im = 1. Noting ξ2im = ξ2i /zim and substituting using the first-order condition for zim

gives the expression reported in Lemma 2 for an interior solution. When zim = 0, payoffs would
diverge if wim ∕= 0, yielding the second part of the lemma. □

Proof of Proposition 2. The first-order conditions in (7) may be written wi = Γ̄wi+(1/κ2i )[c− ξi1]

so long as wim > 0 for every m, that is i ∈ N󰂏. Restricting to the case where if i is acquired by
any player m then i is acquired by all others too, so that wim > 0 for all m,

[I− Γ̄]wi =
1

κ2i
[c− ξi1] ⇒ wi =

1

κ2i
[I− Γ̄]−1 [c− ξi1] ⇒

1 =
󰁛

i∈N󰂏

wi =
󰁛

i∈N󰂏

1

κ2i
[I− Γ̄]−1 [c− ξi1] = [I− Γ̄]−1c

󰁛

i∈N󰂏

1

κ2i
− [I− Γ̄]−11

󰁛

i∈N󰂏

ξi
κ2i

,

which, using the definition of ξ̄󰂏 given in (9), can be solved explicitly for c:

c =
1󰁓

i∈N󰂏
1/κ2i

[I− Γ̄]1+ ξ̄󰂏1.

29This is not immediate: the sum of many invertible matrices is not necessarily itself invertible. It can be
guaranteed by restricting the βm parameters (that they be small enough: the inverse exists if βm = 0 for
all m, so continuity of the matrix inverse function guarantees such positive values can be found).
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Now c can be substituted back into the expression for wi, giving

wi =
1

κ2i

󰀫
1󰁓

j∈N󰂏
1/κ2j

1− (ξi − ξ̄󰂏)[I− Γ̄]−11

󰀬
,

The fact that players acquire the clearest signals follows from inspection. □

Proof of Proposition 3. Multiply (9) through by ξi to obtain

zi =
ξi
κ2i

󰀫
1󰁓

j∈N󰂏
1/κ2j

1− (ξi − ξ̄󰂏)[I− Γ̄]−11

󰀬
,

then sum over i ∈ N󰂏, and note the identity
󰁓

i∈N󰂏
ξi(ξi − ξ̄󰂏)/κ

2
i ≡

󰁓
i∈N󰂏

(ξi − ξ̄󰂏)
2/κ2i , by the

definition of ξ̄󰂏 in (9), yielding the expression in (10). □

Proof of Proposition 4. Follows directly from arguments in the main text. □

Proof of Proposition 5. The first part and (12) follow directly from arguments in the main text.
The formulation of N󰂏 follows immediately from inspection of the first equation in (12). For N󰂏

unique, see the proof in Myatt and Wallace (2012, Proposition 2). □

Section 3.2 observes that if there are no asymmetries in the connections between players (so
that γmm′ = 1/(M − 1) for all m and m′ ∕= m) then players centralities are determined by their
aggregate concerns for coordination. This is recorded here formally as a lemma.

Lemma 3 (Coordination and Centrality). If there are no asymmetries in the connections between
players and if β1 < · · · < βN , then players’ centralities satisfy b1 < b2 < · · · < bM for any 1 ≥ ρ > 0.

Proof of Lemma 3. For expositional simplicity (and without loss of generality) set ρ = 1. The
vector of Bonacich centralities is b = [I − Γ̄]−11 =

󰁓∞
k=0 b

k where bk ≡ Γ̄k1 . b1 satisfies b1m = βm

and so (i) b11 < · · · < b1M and (ii) (b11/β1) ≥ · · · ≥ (b1M/βM ). This is an induction basis. As an
induction hypothesis suppose that, for k ≥ 1, both (i) and (ii) hold. Now, for any m < M ,

bk+1
m =

βm
M − 1

󰁛

m′ ∕=m

bkm′ and so bk+1
m < bk+1

m+1 ⇔ βm
󰁛

m′ ∕=m

bkm′ < βm+1

󰁛

m′ ∕=m+1

bkm′

⇔ βmbkm+1 − βm+1b
k
m < (βm+1 − βm)

󰁛

m′ ∕=m,m+1

bkm′ .

The right-hand side is positive, and so a sufficient condition for this to hold is βmbkm+1 ≤ βm+1b
k
m

or equivalently (bkm+1/βm+1) ≤ (bkm/βm), which holds from the induction hypothesis. Further,

bk+1
m

βm
≥

bk+1
m+1

βm+1
⇔

󰁛

m′ ∕=m

bkm′ ≥
󰁛

m′ ∕=m+1

bkm′ ⇔ bkm+1 ≥ bkm,

which also holds owing to the induction basis. By the principle of induction, (i) and (ii) hold for
all k. This in turn implies that bm =

󰁓∞
k=0 b

k
m is strictly increasing in m. □

Proof of Proposition 6. Define

φ(ρ) = (1− βAωAAρ)(1− βBωBBρ)− βAβBωABωBAρ
2 (13)

which is the determinant of (I− ρΩ̄). Next, define the weighted averages ψ+ and ρ+ as

ψ+ =
󰁛n

i=1

ψi

φ(ρi)
and ρ+ =

󰁛n

i=1

ψiρi
φ(ρi)

. Finally, let ρ̂ ≡ ρ+
ψ+

. (14)
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The maintained assumption |βm| < 1 guarantees φ(ρ) > 0 for all ρ ∈ [0, 1]. Moreover, φ(ρ) ≤ 1 for
all ρ ∈ [0, 1]. The “average publicity” term ρ̂ is also between zero and one. Whether a signal is
more heavily used by members of A rather than B turns on whether or not ρi exceeds ρ̂.

A solution for the equilibrium will be found by assuming wjm = wjA and cm = cA for all m ∈ A;
wjw = wjB and cm = cB for all m ∈ B. Then, using (6) in Lemma 1,

wjA = βA[ωAAwjA + ωABwjB]ρj + cAψj ;

wjB = βB[ωBAwjA + ωBBwjB]ρj + cBψj .

These equations solve readily to yield wjA and wjB in terms of cA and cB. For example,

wjA = ψj
βAωABρjcB + (1− βBωBBρj)cA

(1− βAωAAρj)(1− βBωBBρj)− βAβBωABωBAρ2j .
(15)

Clearly, an equivalent is readily available for wjB simply by swapping A and B in the above
wherever they occur. Now, summing over j, and using

󰁓n
i=1wim = 1 for all m,

1 = βAωABρ+cB + (ψ+ − βBωBBρ+)cA = βBωBAρ+cA + (ψ+ − βAωAAρ+)cB, (16)

where ρ+ and ψ+ are given in (14). Equating the two expressions in (16), collecting terms, and
noting that ωAA + ωAB = ωBA + ωBB = 1,

cA
cB

=
ψ+ − βAρ+
ψ+ − βBρ+

, (17)

from which cA > cB ⇔ βA < βB is immediate. Now using (15), cancelling the common denomi-
nator and the ψj terms, wjA < wjB if and only if

βAωABρjcB + (1− βBωBBρj)cA < βBωBAρjcA + (1− βAωAAρj)cB.

Collecting terms and rewriting, this holds if and only if

1− βBρj
1− βAρj

<
cB
cA

=
1− βBρ+/ψ+

1− βAρ+/ψ+
,

where the last equality follows from (17). Assuming βA < βB the first ratio is decreasing in ρj ,
so the inequality is equivalent to ρj > ρ+/ψ+ ≡ ρ̂. □

An observation in the text is that either players in A acquire a subset of those signals acquired
by players in B or vice versa. This is stated and proved here as a formal lemma.

Lemma 4 (Nested Attention). Either NA ⊆ NB or NB ⊆ NA or both.

Proof of Lemma 4. The first-order conditions for wiA and wiB (when positive) from (7) are

wiA = βA[ωAAwiA + ωABwiB] +
cA − ξi

κ2i
and wiB = βB[ωBBwiB + ωBAwiA] +

cB − ξi
κ2i

. (18)

The above first-order conditions apply if i ∈ NA ∩NB ≡ NA∩B. For i ∈ NA ∩ ¬NB ≡ NA/B,

wiA = βAωAAwiA +
cA − ξi

κ2i
and wiB = 0.

Clearly, for i ∈ NB ∩ ¬NA ≡ NB/A the expressions are reversed. So, first, suppose that there
exists i ∕= j such that i ∈ NA/B and j ∈ NB/A. Then

wiA =
1

1− βAωAA

cA − ξi
κ2i

> 0 and wjB =
1

1− βBωBB

cB − ξi
κ2i

> 0, (19)
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whereas wiB = wjA = 0. For a player in B to not use signal i, the right-hand side of the first-order
condition given above in (18) must be weakly negative. That is,

βB[ωBBwiB + ωBAwiA] +
cB − ξi

κ2i
≤ 0.

In equilibrium, then, ξi ≥ βBωBAwiAκ
2
i + cB = βBωBA(cA − ξi)/(1− βAωAA) + cB. Equivalently,

ξi ≥
βBωBAcA + (1− βAωAA)cB

1− βAωAA + βBωBA
.

Now wiA > 0, so cA > ξi. This in turn implies that, for signal i,

cA > ξi ≥
βBωBAcA + (1− βAωAA)cB

1− βAωAA + βBωBA
, and so cA > cB. (20)

However, the very same exercise for signal j ∕= i can be conducted, yielding

cB > ξj ≥
βAωABcB + (1− βBωBB)cA

1− βBωBB + βAωAB
, and so cB > cA.

Clearly, then, there cannot be both an i ∈ NA/B and a j ∈ NB/A in equilibrium. □

Proof of Proposition 7. (i) Suppose NB ⊆ NA. B-types use a (possibly weak) subset of the signals
used by A-types. (18) and the first expression in (19) provide the first-order conditions for i ∈
NA∩B and i ∈ NA/B respectively. wiB = 0 for all i ∈ NA/B and all other weights are zero.

Consider the implication NB ⊂ NA ⇒ βB > βA first. Suppose indeed that NB ⊂ NA. Then
NA∩B = NB. Substitute the first-order conditions for wiA into those for wiB in (18) for all i ∈ NB

(recalling that NB ⊂ NA). This exercise yields

wiB(1− βBωBB) =
βBωBA

1− βAωAA

󰀗
βAωABwiB +

cA − ξi
κ2i

󰀘
+

cB − ξi
κ2i

.

Rearranging to solve for wiB, and using φ ≡ φ(1) from (13),

φwiB = βBωBA
cA − ξi

κ2i
+ (1− βAωAA)

cB − ξi
κ2i

wiB =
1

φκ2i

󰁫
βBωBAcA + (1− βAωAA)cB − ξi(βBωBA + (1− βAωAA))

󰁬
.

Now, summing over NB, and noting
󰁓

j∈NB
wjB = 1,

βBωBAcA + (1− βAωAA)cB =
φ󰁓

j∈NB
1/κ2j

+ ξ̄B(1− βAωAA + βBωBA), (21)

where ξ̄B is the accuracy-weighted average clarity over signals used by type-B players (explicitly
written in Proposition 7). Thus, for such i ∈ NB, weights for B types are

wiB =
1/κ2i󰁓

j∈NB
1/κ2j

+ φB

󰀕
ξ̄B − ξi

κ2i

󰀖
, with φB ≡ 1− βAωAA + βBωBA

(1− βAωAA)(1− βBωBB)− βAβBωABωBA
. (22)

The weights for type-A players depend on whether type-B players are using the signals or not.
When they are, (18) applies for wiA, when not, (19) applies. So

i ∈ NA/B ⇒ wiA =
1

1− βAωAA

cA − ξi
κ2i

i ∈ NA∩B ⇒ wiA =
1

1− βAωAA

cA − ξi
κ2i

+
βAωAB

1− βAωAA
wiB. (23)
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Summing over all i ∈ NA = NA∩B ∪NA/B and noting that
󰁓

j∈NA
wjA =

󰁓
j∈NB

wjB = 1,

1 =
1

1− βAωAA

󰀵

󰀷cA
󰁛

j∈NA

1

κ2j
−

󰁛

j∈NA

ξj
κ2j

󰀶

󰀸+
βAωAB

1− βAωAA
.

Rearranging gives an expression for cA. Now, by assumption, NB ⊂ NA and so the chain of
inequalities in the first expression of (20) holds for some i. Using (21) and

cA =
1− βA󰁓
j∈NA

1/κ2j
+ ξ̄A,

(20) can be true for this i if and only if

ξ̄A +
1

φA

1󰁓
j∈NA

1/κ2j
> ξi ≥ ξ̄B +

1

φB

1󰁓
j∈NB

1/κ2j
, where φA =

1

1− βA
. (24)

Assume the converse of the required result, so that γB ≤ γA. Then

1

φA
≤ 1

φB
⇔ 1− βA ≤ (1− βAωAA)(1− βBωBB)− βAβBωABωBA

1− βAωAA + βBωBA

⇔ (1− βAωAA)
2 + (βBωBA − βAωAB)(1− βAωAA) ≤ (1− βAωAA)(1− βBωBB)

⇔ (1− βAωAA) + (βBωBA − βAωAB) ≤ (1− βBωBB)

⇔ βB ≤ βA.

So, if βB ≤ βA then 1/φA ≤ 1/φB and so

ξ̄A +
1

φA

1󰁓
j∈NA

1/κ2j
≤ ξ̄A +

1

φB

1󰁓
j∈NA

1/κ2j
. (25)

But there must an exist an i such that (20) holds, and therefore an i /∈ NB such that (24) holds.

ξi ≥ ξ̄B +
1

φB

1󰁓
j∈NB

1/κ2j
⇔ ξi ≥ ξ̄B∪{i} +

1

φB

1󰁓
j∈NB∪{i} 1/κ

2
j

,

defining ξ̄B∪{i} in an appropriate way and using the usual argument via cross multiplication and
addition of ξi/κ2i to both sides. If NA = NB ∪ {i} then this expression along with (25) contradicts
(24). If NA contains further signals not in NB, then let i = {argminj ξj | j ∈ NA/B} and apply the
above argument. Then repeat the last part of the argument for i+ 1, i+ 2, etc., until all signals
in NA/B are included. A contradiction is reached again: if NB ⊂ NA then βB > βA, as required.

Now suppose βB ≤ βA. Then NB is not a subset of NA by modus tollens. Apply Lemma 4:
NA ⊆ NB. Thus, swapping A for B, if βB ≥ βA then NB ⊆ NA, proving the proposition’s first
statement. Note that application of (24) immediately gives the final statement of claim (i), that
this subset consists precisely of the clearest signals in NA.
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(ii) Recall the weights given in (22) and (23). Let i ∈ NA∩B so that players in A and B acquire i,

wiA ≤ wiB ⇔ 1

1− βAωAA

cA − ξi
κ2i

+
βAωAB

1− βAωAA
wiB ≤ wiB

⇔ cA − ξi
κ2i

≤ (1− βA)wiB

⇔ cA − ξi
κ2i

≤ 1

φA

󰀥
1/κ2i󰁓

j∈NB
1/κ2j

+ φB

󰀕
ξ̄B − ξi

κ2i

󰀖󰀦

⇔ φA

󰀥
1

φA
󰁓

j∈NA
1/κ2j

+ (ξ̄A − ξi)

󰀦
≤ 1󰁓

j∈NB
1/κ2j

+ φB(ξ̄B − ξi)

⇔ ξi ≤
1

φB − φA

󰀥
1󰁓

j∈NB
1/κ2j

− 1󰁓
j∈NA

1/κ2j
+ (φB ξ̄B − φAξ̄A)

󰀦
,

where the fourth line follows from substitution for cA and the final line from noting that φB > φA

if βB > βA. If NA = NB then the summations are identical and cancel, and ξ̄A = ξ̄B, yielding the
final result stated in claim (ii). If NB ⊂ NA then the signals unused by B (i ∈ NA/B) are the least
clear used by A, trivially confirming the result for such i.

(iii) Again consider (22) and (23). Using the former, multiplying by ξi and summing over i ∈ NB,

ZB = ξ̄B − φB

󰁛

i∈NB

(ξi − ξ̄B)
2

κ2i
.

Similarly, multiply (23) through by ξi, and sum over i ∈ NA,

ZA =
1

1− βAωAA

󰀵

󰀷
󰁛

i∈NA

ξi
κ2i

cA −
󰁛

i∈NA

ξ2i
κ2i

󰀶

󰀸+
βAωAB

1− βAωAA
ZB,

since wiB = ziB = 0 for all i ∈ NA/B. This is greater than or equal to ZB if and only if

󰁛

i∈NA

ξi
κ2i

cA −
󰁛

i∈NA

ξ2i
κ2i

≥ ZB(1− βA)

⇔ ξ̄A − φA

󰁛

i∈NA

(ξi − ξ̄A)
2

κ2i
≥ ξ̄B − φB

󰁛

i∈NB

(ξi − ξ̄B)
2

κ2i
,

which follows by substituting for cA and rearranging. Now βB > βA ⇒ φB > φA. Moreover
NB ⊆ NA. By the proof method of the later Proposition 9, ZA ≥ ZB as required. □

Proof of Proposition 8. The objective is to examine the properties of wjM as M → ∞. First, wjm

is found for any j,m in terms of ck with k ∈ {1, . . . ,m}. For m > 1, repeated substitution yields

wjm = βρjwjm−1 + ψjcm

= βρj(βρjwjm−2 + ψjcm−1) + ψjcm

= βρj(βρj(βρjwjm−3 + ψjcm−2) + ψjcm−1) + ψjcm

= . . .

= (βρj)
m−1wj1 + ψj

󰁛m−2

k=0
(βρj)

kcm−k

= ψj

󰁛m−1

k=0
(βρj)

kcm−k,
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where the last line uses wj1 = ψjc1. Now, making a change of variable for k,

wjm = ψj

󰁛m

k=1
(βρj)

m−kck. (26)

Using the fact that
󰁓n

i=1wim = 1, and (26), the sequence {cm}Mm=1 can be deduced:

1 =
󰁛n

i=1
ψi

󰁛m

k=1
(βρi)

m−kck.

So, using this expression for m and m+ 1 yields
󰁛n

i=1
ψi

󰁛m

k=1
(βρi)

m−kck =
󰁛n

i=1
ψi

󰁛m+1

k=1
(βρi)

m+1−kck

=
󰁛n

i=1
ψi

󰁫󰁛m

k=1
(βρi)

m+1−kck + cm+1

󰁬

=
󰁛n

i=1
ψiβρi

󰁛m

k=1
(βρi)

m−kck +
󰁛n

i=1
ψicm+1

⇒ cm+1

󰁛n

i=1
ψi =

󰁛n

i=1
ψi(1− βρi)

󰁛m

k=1
(βρi)

m−kck or

cm+1 =
󰁛n

i=1
ψ̂i(1− βρi)

󰁛m

k=1
(βρi)

m−kck

=
󰁛m

k=1
ck

󰁫󰁛n

i=1
ψ̂i(1− βρi)(βρi)

m−k
󰁬

=
󰁛m

k=1
ckv

m
k , where vmk ≡

󰁛n

i=1
ψ̂i(1− βρi)(βρi)

m−k.

Now, note that vmk = vm−1
k−1 and vm−1

k > vmk for all m ≥ k > 1. Define ∆cm ≡ cm − cm−1. Then

∆cm+1 =
󰁛m

k=1
ckv

m
k −

󰁛m−1

k=1
ckv

m−1
k =

󰁛m

k=1
ckv

m
k −

󰁛m

k=2
ck−1v

m−1
k−1

= c1v
m
1 +

󰁛m

k=2
ckv

m
k −

󰁛m

k=2
ck−1v

m−1
k−1

= c1v
m
1 +

󰁛m

k=2
∆ckv

m
k .

(The last line follows from vmk = vm−1
k−1 .) Now, by induction, it can be shown that cm < cm−1 for all

m > 1, or equivalently that ∆cm < 0 for all m > 1. Suppose, first of all, that for some t, ∆ct < 0.
Then, because vt−1

k > vtk for all t ≥ k > 1,

∆ct+1 = c1v
t
1 +

󰁛t

k=2
∆ckv

t
k = c1v

t
1 +

󰁛t−1

k=2
∆ckv

t
k +∆ctv

t
t

< c1v
t−1
1 +

󰁛t−1

k=2
∆ckv

t−1
k +∆ctv

t
t = ∆ct +∆ctv

t
t = (1 + vtt)∆ct < 0,

by the induction hypothesis. So, if ∆ct < 0 then ∆ct+1 < 0. Now consider m = 2,

c2 =
󰁛1

k=1
ckv

1
k = c1v

1
1 = c1

󰁛n

i=1
ψ̂i(1− βρi) < c1,

since vmk < 1 for all m ≥ k ≥ 1. So indeed c2 < c1 or ∆c2 < 0. Therefore, by induction, ∆cm < 0

for all m. In other words, {cm}Mm=1 is a decreasing sequence. It is bounded below. In particular,
again using

󰁓n
i=1wim = 1, for all m > 1

wjm = βwjm−1ρj + cmψj ⇒ cm =
1− β

󰁓n
i=1wim−1ρi󰁓n
i=1 ψi

≥ 1− β󰁓n
i=1 ψi

> 0.

Moreover, the value of c1 is known, and so

cm ∈
󰀗

1− β󰁓n
i=1 ψi

,
1󰁓n

i=1 ψi

󰀘
for all m.

Therefore {cm}Mm=1 converges as M → ∞. It remains to establish that the sequence {wjm}Mm=1

converges as M → ∞ for all j. In fact, subtracting wjm−1 from wjm and using “∆” notation
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∆wjm ≡ wjm − wjm−1 = βρj∆wjm−1 + ψj∆cm for m > 2. Evaluating at M and taking M → ∞,

lim
M→∞

∆wjM = βρj lim
M→∞

∆wjM−1 + ψj lim
M→∞

∆cM = βρj lim
M→∞

∆wjM−1,

since limM→∞∆cM = 0. Hence limM→∞∆wjM = 0. Thus the sequence {wjm}Mm=1 converges as
M → ∞ for all j. Define c∞ ≡ limM→∞ cM . From the Mth first-order condition

wjM = βwjM−1ρj + cMψj ⇒ lim
M→∞

(wjM − βρjwjM−1) = ψjc∞,

and so, defining wj∞ ≡ limM→∞wjM , for all j,

wj∞ =
ψj

1− βρj
c∞ ⇒ c∞ =

󰀗󰁛n

i=1

ψi

1− βρi

󰀘−1

.

Thus the weights converge to the familiar (from Section 3) expression

wj∞ =
ψj

1− βρj

󰀱󰁛n

i=1

ψi

1− βρi
for all j.

Summarizing in the accuracy/clarity notation and substituting for ρj and ψj gives the expression
in the statement of the proposition. □

The next lemma is useful for the proof of Proposition 9, and is stated (in words) in the main text.

Lemma 5 (Shrinking Signal Acquisition). If player m does not acquire signal j then nor does any
later player m′ > m in the hierarchy. That is zjm = 0 ⇒ zjm′ = 0 for all m′ > m.

Proof of Lemma 5. The first-order conditions for m > 1 when wjm > 0 may be derived from (7):

wjm = βwjm−1 +
cm − ξj

κ2j
. (27)

The first task is to show that cm ≤ cm−1 for all m > 1. Consider (27). Sum over all i ∈ Nm, then

1 =
󰁛

i∈Nm

wim = β
󰁛

i∈Nm

wim−1 + cm
󰁛

i∈Nm

1

κ2i
−

󰁛

i∈Nm

ξi
κ2i

.

Note that
󰁓

i∈Nm
wim−1 ≤ 1. Thus, for all m > 1, cm can be bounded below:

cm ≥
(1− β) +

󰁓
i∈Nm

ξi/κ
2
i󰁓

i∈Nm
1/κ2i

≡ Ξ(Nm;β).

For j /∈ Nm,

βwjm−1 +
cm − ξj

κ2j
≤ 0 ⇒ β

󰁛

i∈N−

wim−1 + cm
󰁛

i∈N−

1

κ2i
−

󰁛

i∈N−

ξi
κ2i

≤ 0,

where N− = ¬Nm ∩Nm−1. For j ∈ N+ = Nm ∩Nm−1 the condition in (27) applies, and
󰁛

i∈N+

wim = β
󰁛

i∈N+

wim−1 + cm
󰁛

i∈N+

1

κ2i
−

󰁛

i∈N+

ξi
κ2i

.

For j ∈ N−, wjm = 0 and Nm−1 = N+ ∪N−, so

1 ≥
󰁛

i∈Nm−1

wim ≥ β
󰁛

i∈Nm−1

wim−1 + cm
󰁛

i∈Nm−1

1

κ2i
−

󰁛

i∈Nm−1

ξi
κ2i

= β + cm
󰁛

i∈Nm−1

1

κ2i
−

󰁛

i∈Nm−1

ξi
κ2i

.

In other words, cm ≤ Ξ(Nm−1;β) for all m > 1. Thus, cm ≤ Ξ(Nm−1;β) ≤ cm−1 for all m > 2.
Moreover, from the earlier fact that c1 = Ξ(N1, 0), and noting that Ξ(·,β) is decreasing in β,
cm ≤ Ξ(Nm−1;β) ≤ cm−1 for all m > 1: {cm}Mm=1 is a decreasing sequence, as required.
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Now consider the statement of the lemma. If m does not use j, then wjm = 0. Therefore βwjm−1+

(cm − ξj)/κ
2
j ≤ 0. As a consequence, ξj ≥ cm. For m+ 1 to use j, wjm+1 must be strictly positive,

and therefore (27) applies (evaluated for player m+ 1) and is strictly positive. But wjm = 0, so it
must be that cm+1 > ξj . But then ξj ≥ cm ≥ cm+1 > ξj , a contradiction. Repeating this argument
for all m′ > m+ 1 yields the result. □

Proof of Proposition 9. From the discussion in the main text, N1 = {1, . . . , n1}. To confirm that
N1 is unique, it is sufficient to confirm that Ξ(N1; 0) crosses the (rising) sequence of ξis only once
(which will be after n1 and before n1 + 1, by definition). First, take j = max{i ∈ N} such that
ξj+1 > Ξ(N ; 0) > ξj , if such exists. Then, for instance, for any k > j,

ξk ≥ ξj+1 > Ξ(N ; 0) =
1 +

󰁓
i∈N ξi/κ

2
i󰁓

i∈N 1/κ2i
⇔ ξk

󰁛

i∈N

1

κ2i
> 1 +

󰁛

i∈N

ξi
κ2i

⇔ ξk
󰁛

i∈N

1

κ2i
+

ξk
κ2k

> 1 +
󰁛

i∈N

ξi
κ2i

+
ξk
κ2k

⇔ ξk
󰁛

i∈N∪{k}

1

κ2i
> 1 +

󰁛

i∈N∪{k}

ξi
κ2i

⇔ ξk >
1 +

󰁓
i∈N∪{k} ξi/κ

2
i󰁓

i∈N∪{k} 1/κ
2
i

= Ξ(N ∪ {k}; 0).

A symmetrical argument applies for k ≤ j, so that ξk ≤ ξj < Ξ(N ; 0) ⇔ ξk < Ξ(N\{k}; 0).
Thus, by continued application of these facts, no superset or strict subset of N can satisfy this
property. Therefore, there exists a unique n1 ≥ 1 such that zj1 > 0 ⇔ wj1 > 0 for all j ≤ n1 and
zj1 = wj1 = 0 for all j > n1. So N1 = {1, . . . n1} is unique as required.

Now, consider m > 1. In order to show Nm = {1, . . . , nm} with nm ≤ nm−1 for all m > 1, note that
Nm ⊆ Nm−1 from Lemma 5. Next, Nm = {1, . . . , nm} for all m is required. That is, each player
uses a subset of signals consisting of the most clear (lowest ξj). This has been shown for m = 1.
To see this for general m, consider the minimum m for which, for some j, wjm = 0 but wjm−1 > 0.
Now, again by Lemma 5, wjm−1 > 0 ⇒ wjm′ > 0 for all m′ < m − 1. By way of a contradiction
suppose that j < nm and there exists some i > j for which wim > 0. Then

βwjm−1 +
cm − ξj

κ2j
≤ 0 ⇒ β

󰀣
βwjm−2 +

cm−1 − ξj
κ2j

󰀤
+

cm − ξj
κ2j

≤ 0

⇒ β2wjm−2 + β
cm−1 − ξj

κ2j
+

cm − ξj
κ2j

≤ 0 ⇒ βm−1wj1 +

m󰁛

k=2

βm−k ck − ξj
κ2j

≤ 0

⇒
m󰁛

k=1

βm−k ck − ξj
κ2j

≤ 0,

where the penultimate line follows from repeated substitution for wjm−2 and the final line from
the value of wj1 established in the main text. Rearranging,

ξj ≥
󰁛m

k=1
βm−kck

󰀑󰁛m

k=1
βm−k.

Signal i is used by m, and so is used by all m′ < m. The very same calculation can be made for i,
therefore; because wim > 0, the first-order condition applies, and

wim =

m󰁛

k=1

βm−k ck − ξi
κ2i

. (28)

But i > j, so ξi > ξj ≥
󰁓m

k=1 β
m−kck

󰀑󰁓m
k=1 β

m−k implying wim = 0, a contradiction. No “gap” can
open up for the first time at any m > 1. Since there are “no gaps” at m = 1, there are no gaps for
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any m. Finally, observe that nm is uniquely determined for each m > 1 (applying precisely the
method used above for n1). These facts together prove the statements in claim (i).

Turning to total information acquisition, in claim (ii), define

ξ̄m =

󰁓
i∈Nm

ξi/κ
2
i󰁓

i∈Nm
1/κ2i

.

Now given the ordering of the ξis and the facts proven earlier that Nm ⊆ Nm−1 for all m > 1, and
there are “no gaps” for any m so that Nm = {1, . . . , nm}, it is clear that this measure of “average
clarity” declines: ξ̄m ≤ ξ̄m−1 for all m > 1.30 Using this notation, construct the positive weights
for player m. In particular, since wim > 0 implies that wim′ > 0 for all m′ < m. (28) applies
whenever wim > 0. Summing over all such i for player m and rearranging,

m󰁛

k=1

βm−kck
󰁛

i∈Nm

1

κ2i
= 1 +

m󰁛

k=1

βm−k
󰁛

i∈Nm

ξi
κ2i

= 1 +
1− βm

1− β

󰁛

i∈Nm

ξi
κ2i

.

Therefore, dividing through both sides by
󰁓

i∈Nm
1/κ2i and using the ξ̄m notation,

m󰁛

k=1

βm−kck =
1󰁓

i∈Nm
1/κ2i

+
1− βm

1− β
ξ̄m. (29)

From the first order conditions, zim = ξiwim. So, if wim > 0 then, from (28), for all m > 1,

zim =

m󰁛

k=1

βm−k

󰀕
ck − ξi
κ2i

󰀖
ξi. (30)

Now, total information use (or total cost of information use) is Zm =
󰁓

i∈Nm
zim,

Zm =

m󰁛

k=1

βm−kck
󰁛

i∈Nm

ξi
κ2i

−
m󰁛

k=1

βm−k
󰁛

i∈Nm

ξ2i
κ2i

=

󰀥
1󰁓

i∈Nm
1/κ2i

+
1− βm

1− β
ξ̄m

󰀦
󰁛

i∈Nm

ξi
κ2i

− 1− βm

1− β

󰁛

i∈Nm

ξ2i
κ2i

= ξ̄m − 1− βm

1− β

󰀣
󰁛

i∈Nm

ξ2i
κ2i

− ξ̄2m
󰁛

i∈Nm

1

κ2i

󰀤
= ξ̄m − 1− βm

1− β

󰁛

i∈Nm

(ξi − ξ̄m)2

κ2i
, (31)

where the second equality follows from (29), the third from rearrangement and the definition of
ξ̄m and (31) from further rearrangement of the “variance-like” second term.

Now recall i ∈ Nm if and only if wim > 0 ⇔ zim > 0. Using the recursive expression for wim in
(28), therefore, i ∈ Nm if and only if

wim > 0 ⇔
m󰁛

k=1

βm−k ck − ξi
κ2i

> 0 ⇔
m󰁛

k=1

βm−kck >
1− βm

1− β
ξi

⇔ 1󰁓
i∈Nm

1/κ2i
+

1− βm

1− β
ξ̄m >

1− βm

1− β
ξi ⇔ ξi < ξ̄m +

1− β

1− βm

1󰁓
i∈Nm

1/κ2i
. (32)

Now Nm ⊆ Nm−1 for all m > 1, and zim > 0 ⇒ zi−1m > 0 for all m ≥ 1. Using these facts, the
statement of claim (ii), concerning total acquisition, may be proved.

30Of course, this measure is actually inversely related to average clarity (recall, 1/ξ2i is interpreted as
information source i’s clarity). Therefore, as expected, the signals acquired by players further down the
hierarchy have higher clarity on average than those acquired by players above them.
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If Nm = Nm−1 then inspection of (31) is sufficient. The last term is (weakly) positive, and does
not change from m− 1 to m, likewise the first term, but β < 1 so βm < βm−1, so Zm ≤ Zm−1. The
harder case is when Nm ⊂ Nm−1. Consider moving up the chain from player m + 1 to player m.
Assume, in the first instance, that Nm = Nm+1∪{j}, so that j is the (sole) signal that m acquires,
but m+ 1 does not.

First suppose that ξj = ξ̄m+1. Then ξ̄m = ξ̄m+1. Moreover, since ξ̄m = ξ̄m+1, from (31)

Zm = ξ̄m+1 −
1− βm

1− β

󰁛

i∈Nm

(ξi − ξ̄m+1)
2

κ2i

= ξ̄m+1 −
1− βm

1− β

󰁛

i∈Nm+1

(ξi − ξ̄m+1)
2

κ2i
− 1− βm

1− β

(ξj − ξ̄m+1)
2

κ2j

= ξ̄m+1 −
1− βm

1− β

󰁛

i∈Nm+1

(ξi − ξ̄m+1)
2

κ2i
≥ Zm+1,

where the final equality follows from the supposition ξj = ξ̄m+1, and the inequality follows from
βm+1 < βm and the (weak) positivity of the variance-like term.

Now treat Zm as a function of ξj . Note that it is quadratic in ξj . Compute

dZm

dξj
=

dξ̄m
dξj

− 1− βm

1− β

󰁛

i∈Nm

d

dξj

(ξi − ξ̄m)2

κ2i

=
1/κ2j󰁓

i∈Nm
1/κ2i

− 1− βm

1− β

󰀥
2(ξj − ξ̄m)

κ2j
− 2

󰁛

i∈Nm

(ξi − ξ̄m)

κ2i

dξ̄m
dξj

󰀦

=
1/κ2j󰁓

i∈Nm
1/κ2i

− 1− βm

1− β

󰀥
2(ξj − ξ̄m)

κ2j
−

2/κ2j󰁓
i∈Nm

1/κ2i

󰁛

i∈Nm

(ξi − ξ̄m)

κ2i

󰀦

=
1/κ2j󰁓

i∈Nm
1/κ2i

− 1− βm

1− β

2(ξj − ξ̄m)

κ2j
,

where the final line (and the quantity dξ̄m/dξj) follow from the definition of ξ̄m. So it follows that
Zm is increasing in ξj if and only if ξj < ξ̂m where

ξ̂m ≡ ξ̄m +
1

2

1− β

1− βm

1󰁓
i∈Nm

1/κ2i
.

Summarizing, Zm is a quadratic in ξj with its maximum at ξ̂m and it is greater than or equal to
Zm+1 when evaluated at ξj = ξ̄m+1. It is therefore greater than or equal to Zm+1 (which does not
depend on ξj by assumption) for all ξj ∈ [ξ̄m+1, ξ̂m + (ξ̂m − ξ̄m+1)]. Now

ξ̂m + (ξ̂m − ξ̄m+1) = 2ξ̂m − ξ̄m+1 = ξ̄m +
1− β

1− βm

1󰁓
i∈Nm

1/κ2i
+ (ξ̄m − ξ̄m+1),

where the last term is strictly positive. But, for j to be acquired by m and not by m + 1, it must
be that (32) holds for m and fails for m+ 1. That is

ξ̄m+1 < ξ̄m+1 +
1− β

1− βm+1

1󰁓
i∈Nm+1

1/κ2i
≤ ξi < ξ̄m +

1− β

1− βm

1󰁓
i∈Nm

1/κ2i
,

which implies ξj indeed lies (strictly) within the required range for Zm to be larger than Zm+1.
This argument can be repeated for cases when Nm+1 and Nm differ by more than one signal (in
intermediate steps, starting with the highest ξj in Nm but not in Nm+1, and then the second
highest, and so on). Therefore, Zm ≥ Zm+1 for all m, as required.
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For the third claim of the proposition, first note that by substitution of (29) into (28),

wjm =
1

κ2j

󰀥
1󰁓

i∈Nm
1/κ2i

− 1− βm

1− β
(ξj − ξ̄m)

󰀦
(33)

whenever wjm > 0. Information acquisition of signal j is then simply zjm = ξjwjm. Consider (33)
evaluated at m and m+ 1.

wjm+1 > wjm ⇔ 1󰁓
i∈Nm+1

1/κ2i
− 1− βm+1

1− β
(ξj − ξ̄m+1) >

1󰁓
i∈Nm

1/κ2i
− 1− βm

1− β
(ξj − ξ̄m)

⇔ 1󰁓
i∈Nm+1

1/κ2i
− 1󰁓

i∈Nm
1/κ2i

+
1− βm+1

1− β
ξ̄m+1 −

1− βm

1− β
ξ̄m

>
1− βm+1 − (1− βm)

1− β
ξj =

βm(1− β)

1− β
ξj = βmξj

⇔ ξj <

󰀫
1󰁓

i∈Nm+1
1/κ2i

− 1󰁓
i∈Nm

1/κ2i
+

1− βm+1

1− β
ξ̄m+1 −

1− βm

1− β
ξ̄m

󰀬󰀱
βm.

Noting zjm = ξjwjm proves claim (iii) so long as j is used by both m and m+1. If j is not used by
m+ 1, then the claim follows immediately (m+ 1 uses a subset consisting of the clearest signals
used by m). For the final claim (iv), note that the last line in the above displayed inequality
reduces to ξj < ξ̄m = ξ̄m+1 when Nm = Nm+1. □

APPENDIX B. ADDITIONAL MATERIAL

B.1. Quadratic Forms. As noted in the text,
󰁓

m′ ∕=m γmm′ = 1 is a normalization, which allows
the aggregate coordination motive to be captured by βm. The equality 1−βm+βm

󰁓
m′ ∕=m γmm′ = 1

holds if um is scaled appropriately. Dropping both normalizations and instead re-scaling the
payoff um so that the weight on the match-the-fundamental component is equal to one leads to

um ≡ constant − (am − θ)2 −
󰁛

m′ ∕=m
γmm′(am − am′)2.

This allows for
󰁓

m′ ∕=m γmm′ ∕= 1 and γmm′ ≷ 0 for any pair of players. In a full-information
environment, the best reply of player m to an action profile of others is clearly

BRm[a−m, θ] =
θ +

󰁓
m′ ∕=mγmm′am′

1 +
󰁓

m′ ∕=mγmm′
⇒ ∂BRm[a−m, θ]

∂θ
+

󰁛
m′ ∕=m

∂BRm[a−m, θ]

∂am′
= constant.

Thus a common change in θ and the actions of others changes the best reply of player m by the
same amount. This “adding up” constraint implies that there is a (unique) symmetric equilib-
rium of the full-information game. Note, however, that there is no restriction on how the best
reply of player m responds individually to θ and to the actions of others.

This is now compared with the model used by Ballester, Calvó-Armengol, and Zenou (2006).
They set ui = αixi +

1
2σiix

2
i +

󰁓
j ∕=iσijxixj , and immediately assumed αi = α > 0 and σii = σ < 0

for all i (although their Remarks 1–2 on page 1409 briefly revert to the more general setting).
This uses their notation where i indexes players and xi is the action choice of player i. Payoffs
can be re-scaled so that σ = −1. Changing to the notation of this paper, this is equivalent to

um = θam − 1
2a

2
m +

󰁛
m′ ∕=m

γmm′amam′ .

For this specification the best reply of m to the actions of others is

BRm[a−m, θ] = θ +
󰁛

m′ ∕=m
γmm′am′ ⇒ ∂BRm[a−m, θ]

∂θ
= constant.
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Thus every player’s reaction to a change in the fundamental θ is identical. However, the “adding
up” constraint does not have to hold, and so the equilibrium is not necessarily symmetric. In
fact, symmetry of equilibrium with this payoff specification requires

󰁓
m′ ∕=mγmm′ = constant.

Summarizing, both the specification here and the one of Ballester, Calvó-Armengol, and Zenou
(2006) allow for arbitrary weights on coordination with others. Ballester, Calvó-Armengol, and
Zenou (2006) required the optimal reaction of players to a change in θ (or the expectation of
θ, more generally) to be constant across the player set. Here, however, the optimal reaction of
players to a common shift in both θ and others’ actions is constant across the player set.

These specifications can be combined by allowing an extra parameter δm for each m and setting

um ≡ constant − (am − δmθ)2 −
󰁛

m′ ∕=m
γmm′(am − am′)2,

so that each player m targets a differently scaled version of θ.31 To obtain a specification equiv-
alent to Ballester, Calvó-Armengol, and Zenou (2006) requires δm/

󰀓
1 +

󰁓
m′ ∕=mγmm′

󰀔
to be con-

stant across the player set; to obtain the specification here requires δm to be constant.

B.2. Weights for Three-Player Example. In the example of Figure 1 with at most two signals
in positive use by at least one player and ξ1 < ξ2, suppose there is an equilibrium in which

w11 =
1

κ21

󰀥
1

󰁓2
i=1 1/κ

2
i

− (ξ1 − ξ̄)

󰀦
,

w21 =
1

κ22

󰀥
1

󰁓2
i=1 1/κ

2
i

− (ξ2 − ξ̄)

󰀦
,

w12 =
1

κ21

󰀥
1

󰁓2
i=1 1/κ

2
i

− 1− βγ + β

1− βγ
(ξ1 − ξ̄)

󰀦
(1− βγ) + βγ,

w22 =
1

κ22

󰀥
1

󰁓2
i=1 1/κ

2
i

− 1− βγ + β

1− βγ
(ξ2 − ξ̄)

󰀦
(1− βγ),

w13 = 1 and w23 = 0.

It is straightforward to check that these weights solve the equations of Lemma 2, so long as
w23 = 0 and w22 > 0. (Because ξ1 < ξ̄ < ξ2, with ξ̄ as defined in the main text, if w22 > 0 then
w12 > 0, and w22 > 0 ⇒ w21 > 0 ⇒ w11 > 0.) To confirm w23 = 0 and w22 > 0, using (7), and
following some algebraic manipulations,

w23 = 0 ⇔ ξ2 − ξ1
κ21

≥ 1− β2γ(1− γ)

1 + β(1 + β(1− γ)2)
=

1

b3
. (34)

On the other hand, straightforwardly, w22 > 0 if and only if

1− βγ

1− βγ + β
>

ξ2 − ξ1
κ21

. (35)

The first expression in (35) can exceed the second expression in (34) only if γ < 1
2 (as assumed

in the main text). For player 2 to acquire the second signal and player 3 to ignore it, player 3

must be more central than player 2. Moreover, it is straightforward to check that, for γ < 1
2 , the

inverse of the first expression in (35) is less than b2, player 2’s centrality (b2 and b3 are given in
(2) explicitly). This justifies the sufficient condition for w23 = 0 and w22 > 0 given in the text.

31An additional coefficient νmm′ can also be introduced to scale the target action of each other player, so
that the coordination motive between player m and m′ is captured by the loss γmm′(am − νmm′am′)2.
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B.3. A Generalized Hierarchy Network. Here, a more general version of the hierarchy net-
work analysed in Section 5 is presented. The model introduced at the beginning of the section,
for which Figure 3 illustrates an example, can be extended even further. Below, however, a
recipe is provided for adapting Propositions 8–9 to the case where every level ℓ > 1 contains
several isolated groups, each containing g + 1 players. Any two players within a given group
have γmm′ = γm′m = γ. Each player m in level ℓ > 1 is linked to precisely one player m′ in layer
ℓ − 1 with γmm′ = 1 − gγ. There is a single player in level 1 (player 1) who is linked to no-one.
Further, suppose there are L levels in total.

First, an analogue to Proposition 8 is available. Define wjℓ ≡ wjm and cℓ ≡ cm for any player m

residing in level ℓ. Applying Lemma 1, the optimal weight on signal j for a player in level ℓ is

wjℓ = βρj
󰀋
(1− gγ)wj(ℓ−1) + gγwjℓ

󰀌
+ cℓψj ,

for all ℓ > 1. If ℓ = 1 then wj1 = c1ψj as in the model described in Section 5. For ℓ > 1,

(1− βρjgγ)wjℓ = βρj(1− gγ)wj(ℓ−1) + cℓψj

wjℓ = βρ󰂏jwj(ℓ−1) + cℓψ
󰂏
j , (36)

where ρ󰂏j ≡ ρj(1 − gγ)/(1 − βρjgγ) and ψ󰂏
j ≡ ψj/(1 − βρjgγ). This, however, is the very same

expression as that of the opening statements in the proof to Proposition 8 in Appendix A, but
with ρj replaced with ρ󰂏j and ψj with ψ󰂏

j . The only caveat is that, at ℓ = 1, wj1 = c1ψj .

Noting this difference at ℓ = 1 is all that is required to show an analogue for Proposition 8
(replacing 1− β with an appropriate constant). Repeated substitution in (36) yields (for ℓ > 1)

wjℓ = (βρ󰂏j )
ℓ−1wj1 + ψ󰂏

j

󰁛ℓ−2

k=0
(βρ󰂏j )

kcℓ−k.

Now wj1 = ψjc1 = ψ󰂏
j (1− βρjgγ)c1 = ψ󰂏

j c1 − ψ󰂏
jβρjgγc1. Therefore, (26) can be rewritten

wjℓ = ψ󰂏
j

󰁛ℓ

k=1
(βρ󰂏j )

ℓ−kck − ψ󰂏
j (βρ

󰂏
j )

ℓgγc1

for any player in level ℓ ≥ 1. Now, other than the second term, this is precisely the same as (26).
Following exactly the method of the proof to Proposition 8,

cℓ+1 =
󰁛n

i=1
ψ̂󰂏
i (1− βρ󰂏i )

󰁛ℓ

k=1
(βρ󰂏i )

ℓ−kck − gγ
󰁛n

i=1
ψ̂󰂏
i (1− βρ󰂏i )(βρ

󰂏
i )

ℓc1,

where ψ̂󰂏
j = ψ󰂏

j /
󰁓n

i=1 ψ
󰂏
i . Noting that this last term is the analogue of vℓ0, but where ψj is replaced

with ψ󰂏
j , and ρj is replaced with ρ󰂏j for all j, and abusing notation somewhat,

cℓ+1 =
󰁛ℓ

k=1
ckv

ℓ
k − gγvℓ0c1 where vℓk ≡

󰁛n

i=1
ψ̂󰂏
i (1− βρ󰂏i )(βρ

󰂏
i )

ℓ−k. (37)

Following step-by-step the approach in the proof to Proposition 8 yields

∆cℓ+1 = c1v
ℓ
1 +

󰁛ℓ

k=2
∆ckv

ℓ
k + gγ(vℓ−1

0 − vℓ0)c1.

The last term is positive, given the definition of vℓk above. Showing that the sequence of cks is
decreasing follows by induction. The only difficulty is the step at ℓ = 1. But note, for all ℓ > 1,

vℓ−1
0 − vℓ0 =

󰁛n

i=1
ψ̂󰂏
i (1− βρ󰂏i )

2(βρ󰂏i )
ℓ−1 <

󰁛n

i=1
ψ̂󰂏
i (1− βρ󰂏i )

2(βρ󰂏i )
ℓ−2 = vℓ−2

0 − vℓ−1
0 .

Thus, the induction step follows even when adding this new term to ∆ct+1. Now, from (37),
c2 = c1v

1
1 − gγv10c1 = c1(v

1
1 − gγv10). The first component in the parentheses is smaller than one.

Therefore, c2 < c1. Once again, {ck}Lk=1 is a declining sequence, bounded, and so converges.
The remainder of the proof is exactly the same, replacing ψj with ψ󰂏

j and ρj with ρ󰂏j in each
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expression. Then, as before,

wj∞ =
ψ󰂏
j

1− βρ󰂏j

󰀱 n󰁛

i=1

ψ󰂏
i

1− βρ󰂏i
for all j.

Replace 1 − β with 1 − β(1 + gγ), and recall the maintained assumption that |β(1 + gγ)| < 1.
Therefore, the weight attached to each signal j is precisely as given in Proposition 8, but where
1− β is replaced with 1− β(1 + gγ) and M = L denotes the final level in the hierarchy.

Variants of Lemma 5 and Proposition 9 continue to hold, replacing the player subscript m with
the associated level ℓ and using the notation described above. All that is required is to replace β

appropriately, and to take care to adjust the κ2i parameters in the proof.
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BRAMOULLÉ, Y., R. KRANTON, AND M. D’AMOURS (2014): “Strategic Interaction and Net-
works,” American Economic Review, 104(3), 898–930.
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KÖNIG, M., C. J. TESSONE, AND Y. ZENOU (2014): “Nestedness in Networks: A Theoretical
Model and Some Applications,” Theoretical Economics, 9(3), 695–752.

LEISTER, C. M. (2017): “Information Acquisition and Welfare in Network Games,” Monash Uni-
versity, unpublished manuscript.

LEISTER, C. M., Y. ZENOU, AND J. ZHOU (2017): “Coordination on Networks,” Monash Univer-
sity, unpublished manuscript.

LLOSA, L. G., AND V. VENKATESWARAN (2013): “Efficiency with Endogenous Information
Choice,” NYU Stern, unpublished manuscript.

MORRIS, S., AND H. S. SHIN (2002): “Social Value of Public Information,” American Economic
Review, 92(5), 1521–1534.

MYATT, D. P., AND C. WALLACE (2012): “Endogenous Information Acquisition in Coordination
Games,” Review of Economic Studies, 79(1), 340–374.

(2014): “Central Bank Communication Design in a Lucas-Phelps Economy,” Journal of
Monetary Economics, 63, 64–79.

(2015): “Cournot Competition and the Social Value of Information,” Journal of Economic
Theory, 158(B), 466–506.

(2018): “Information Use and Acquisition in Price-Setting Oligopolies,” The Economic
Journal, 128(609), 845–886.

PAVAN, A. (2016): “Attention, Coordination, and Bounded Recall,” Northwestern University, un-
published manuscript.

SIMS, C. A. (2003): “Implications of Rational Inattention,” Journal of Monetary Economics,
50(3), 665–690.

(2006): “Rational Inattention: Beyond the Linear-Quadratic Case,” American Economic
Review: AEA Papers and Proceedings, 96(2), 158–163.


