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Abstract

A strategy revision process in symmetric normal form games is proposed. Following

Kandori et al. (Econometrica 61 (1993) 29), members of a population periodically revise their

strategy choice, and choose a myopic best response to currently observed play. Their payoffs

are perturbed by normally distributed Harsanyian trembles, so that strategies are chosen

according to multinomial probit probabilities. As the variance of payoffs is allowed to vanish,

the graph theoretic methods of the earlier literature continue to apply. The distributional

assumption enables a convenient closed form characterisation for the weights of the rooted

trees. An illustration of the approach is offered, via a consideration of the role of dominated

strategies in equilibrium selection.
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1. Strategy revision processes with noise

Recent research has been active in tackling the selection of equilibria using
evolutionary methods. Kandori, Mailath and Rob [8, KMR] and Young [14]
examined the long run behaviour of strategy revision processes with noise (a term
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due to Blume [2]). The approach is now familiar. An underlying dynamic is specified
in which revising players choose a best response to either current or historical
strategy choices.1 Since such processes are often path dependent (becoming ‘‘locked
in’’ to pure strategy Nash equilibria), noise is added to yield ergodicity. This ensures
that the process generates a unique long-run distribution of play. KMR [8] and
Young [14] employed the graph-theoretic methods of Freidlin and Wentzell [4] to
characterise this distribution as noise is allowed to vanish. The distribution places all
weight on play corresponding to a single pure strategy Nash equilibrium.

Unfortunately, the selection results obtained by this approach depend critically
upon the specification of noise. Early contributions adopted a ‘‘mutation’’
framework. Revising players fail to choose a best response with some fixed
probability, independent of the state of play. Bergin and Lipman [1] demonstrated
that any equilibrium may be selected via an appropriate choice of state-dependent
mutations. This indicates the need for an examination of a wider variety of noise
processes. Blume [2] constructed a stochastic evolution model in which the expected
payoff differences between two strategies are perturbed by logit noise.2 He found
conditions under which the original selection results (focusing on the risk-dominance
of equilibria) are maintained.3

An alternative approach, and the one taken here, is the adoption of payoff
idiosyncrasy. The preferences of revising players may be different from those in the
underlying stage game. Although players hold myopic (and hence boundedly
rational) beliefs they do not fail to optimise, since any ‘‘contrarian’’ behaviour is
driven by idiosyncrasy. Instead of adding noise to the expected payoff differences,
normally distributed Harsanyian [6] trembles are added directly to payoffs. It follows
that a best response to an observed strategy frequency is characterised by a
multinomial probit. The analogue of vanishing mutations is a purification procedure
whereby the variances of trembles tend to zero.

This approach permits convenient closed form results and the continued
application of the ‘‘least cost rooted tree’’ technique, pioneered by KMR [8] and
Young [14]. The tree weights are shown to have a quadratic form in the expected
payoff differences. These can be interpreted as the ‘‘difficulty’’ of taking steps away
from a given equilibrium. Hence, in contrast to the earlier literature, selection
depends not only on the number of mutations required to move between equilibria,
but also on the likelihood of such mutations.
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1Such processes can be more general. For instance, Vega-Redondo [13] studied players who imitate the

best performing strategy observed, but occasionally experiment by choosing a strategy at random.
2For symmetric 2� 2 games, Blume [2] allowed the probability of a mutation to depend upon the

expected payoff difference between the strategies. He used the logit specification as an example of this.

Such a specification arises when the expected payoff difference between the two strategies is subject to a

logistically distributed disturbance. If the expected payoff advantage of the best response is W; then this

strategy is chosen with probability proportional to expðbWÞ where b-N as the variance of the logistic

noise is allowed to vanish. The logit and probit are leading econometric models of discrete choice.
3More generally, he found that risk-dominant equilibria are selected when the noise process is ‘‘skew-

symmetric.’’ This means that the probability of a mutation depends only upon the absolute difference in

payoffs. Myatt and Wallace [11] discuss exactly how skew-symmetric the noise process needs to be.
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One way to test the robustness of a selection criterion is to compare the predictions
of different noise processes. Perhaps unsurprisingly, the results from mistake-driven
and idiosyncrasy-driven models may sometimes differ. This is particularly likely to
be true when the number of mutations needed to move between equilibria, and the
likelihood of such mutations depend upon the properties of two different subsets of
strategies. An application of this idea is provided in which the presence of a strictly
dominated strategy prevents the selection of a 1=2-dominant equilibrium.

2. A model of stochastic evolution

Consider a two-player symmetric strategic form game with m actions and generic
payoffs:4

1 2 m

1
a11

a11

a21

a12

   
am 1

a1m

2
a12

a21

a22

a22

   
am 2

a2m

...
...

. . .
...

m
a1m

am 1

a2m

am 2

amm

amm

...
...

...

The payoffs ½aij � will be viewed as the expected payoffs for a player. Fixing the

payoffs of a static game of complete information is doubtless a simplification.
Individual players will have idiosyncratic payoffs. These are modelled via
Harsanyian [6] payoff trembles. Each payoff is subject to an independent and
normally distributed perturbation

ãij ¼ aij þ eij where eijBNð0; s2Þ and E½eijekl � ¼ 0 for ijakl:

Notice that the payoff disturbances have a fully parametric form. Importantly, this
specification obtains clear closed-form results. It is also possible to think of this
assumption as an appropriate representation of differing payoffs across players.
Such differences could arise from the sum of many individual idiosyncratic factors,
yielding the normal distribution as a natural approximation. In any case, the use of a
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fully general model is precluded by the work of Bergin and Lipman [1]. They show
that full generality of trembles, particularly allowing trembles to vary by state, leads
to ambiguous results. The state-dependent mutations generated by this model have a
natural form and avoid the inconclusiveness associated with full generality.

The game is played by a population of n players. The population evolves
according to the following strategy revision process. During a period each player
repeatedly plays a fixed strategy against randomly selected opponents from the
remaining n 	 1 players. At the end of each period, a randomly selected member of
the population leaves, and is replaced by another player with newly trembled payoffs
ãij : This player observes the strategy distribution among the incumbents, prior to the

exit of the leaving player, and selects a best response to this frequency.5 The process
repeats itself.

3. Strategy choice with vanishing noise

The analysis begins with the strategy choice of idiosyncratic revising players.
Allowing the variance of payoff perturbations to vanish, the limiting choice
probabilities are shown to have a convenient closed form. Begin by using xARm to

denote a strategy frequency vector, satisfying xiX0 and
Pm

i¼1 xi ¼ 1: The following

definition will be useful.

Definition 1. The normalised mean payoff of strategy i facing frequency x is

miðxÞ ¼
Pm

j¼1 xjaijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1 x2

j

q :

Define the normalised mean payoff advantage of i over j as dijðxÞ ¼ miðxÞ 	 mjðxÞ:

Thus strategy i is, on average, a strictly better response than j to an observed
strategy frequency x whenever dijðxÞ40: Of course, the actual best response of a

revising player depends upon the player’s payoffs, and is stochastic from the
perspective of the analyst. The probability that a revising player finds i to be a best
response is as follows.6

Lemma 1. An entrant facing strategy frequency x adopts strategy i with probability

riðx; sÞ ¼
Z

N

	N

Y
jai

F z þ dijðxÞ
s

� �( )
fðzÞ dz;

where F and f denote the Gaussian distribution and density functions, respectively.
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5The dynamic might be specified such that observation takes place post-exit. However, this is

immaterial to the results that follow and would only complicate notation. A dynamic in which all members

of the population simultaneously revise their strategies would also generate similar results.
6The proof to this, and all subsequent results, can be found in Appendix A.
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Thus the strategy choice of a revising player is the realisation of a homoskedastic
multinomial probit. Unfortunately, the choice probabilities are not available in
closed analytic form—numeric evaluation of multiple integrals is required.
Subsequent selection analysis, however, will place great interest in the behaviour
of these probabilities as payoff idiosyncrasy vanishes. Clearly, if mi4mj8jai then

ri-1 and rj-0 as s-0: Interest will focus, however, on the rate at which these

latter probabilities vanish. Although analytic expressions are unavailable for fixed s;
these probabilities become parametric as idiosyncrasy vanishes. This idea is
formalised using the following definition:

Definition 2. f ðsÞ40 has exponential cost c40 if for arbitrarily small x40:

lim
s-0

f ðsÞ exp c þ x
2s2

� �
¼ N and lim

s-0
f ðsÞ exp c 	 x

2s2

� �
¼ 0:

This property is denoted f ðsÞ ¼ õðcÞ or alternatively cð f ð�ÞÞ ¼ c:

Thus a function has exponential cost c if it behaves as expð	c=2s2Þ does when s
vanishes. The exponential cost property has parallels with the standard oð�Þ and Oð�Þ
notation familiar from the asymptotic behaviour of functions and sequences. The

main difference is that the behaviour of f ðsÞ expðc=2s2Þ is undefined. Familiar
properties hold.

Lemma 2. Exponential cost has the following properties:

Ym
i¼1

õðciÞ ¼ õ
Xm

i¼1

ci

 !
;
Xm

i¼1

õðciÞ ¼ õ min
1pipm

ci

� �
and a � õðciÞ ¼ õðciÞ:

Further, taking ratios of functions of s: ci4cj ) lims-0 ½õðciÞ=õðcjÞ� ¼ 0:

The following proposition determines the exponential cost of the probit
probabilities.7

Proposition 1. The multinomial probit ri has exponential cost

c ¼ Ji � var
j:dijp0

ðdijÞ ¼
X

j:dijp0

d2ij 	
P

j:dijp0 dij


 �2
Ji

;

where Ji ¼
P

j Iðdijp0Þ and Ið�Þ represents the indicator function.

Notice immediately that if strategy i is the best response in mean payoffs, then
c ¼ 0; since lims-0 ri ¼ 1: More generally, if there are Ji strategies that are weakly
better than i in mean payoffs, then the exponential cost is Ji times the variance of the
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mean payoff advantage across this set of strategies. This convenient formulation
follows from the judicious choice of payoff tremble distribution.

Intuition is built by consideration of the m ¼ 2 case. Suppose that a114a21 so that
ð1; 1Þ is a pure strategy Nash equilibrium, and suppose that x1 ¼ 1: Omitting

dependence on x; it is clear that d12 ¼ a11 	 a2140; and furthermore ã11 	
ã21BNðd12; 2s2Þ: In this simple two strategy case choice probabilities are simple
binomial probits. Clearly,

r2 ¼ 1	 F
d12
s
ffiffiffi
2

p
� �

¼ 1	 Fðd12=s
ffiffiffi
2

p
Þ

fðd12=s
ffiffiffi
2

p
Þ

� f
d12
s
ffiffiffi
2

p
� �

:

Since d1240 it is clear that r2-0 as s-0: Examining the right-hand side of this
equation, the first term is the (inverted) hazard rate of the normal distribution. The
hazard rate fðzÞ=ð1	 FðzÞÞ is asymptotically linear as z-N: It follows that the first
term is dominated by the second (exponential) term in the limit. Hence

r2-
1ffiffiffiffiffiffi
2p

p exp 	d212
4s2

� �
¼ õ

d212
2

� �
: ð1Þ

The probability of a non-best response depends upon the square of the payoff
difference between the two strategies. Proposition 1 extends this to the multinomial
case.

4. Long-run behaviour

The current state of play in the population is characterised by the number of

agents playing each strategy i; yielding the state space S ¼ fsAZm
þ:
Pm

i¼1 si ¼ ng:
The behaviour of revising players is determined solely by the strategies employed by
incumbents. It follows that the strategy revision process described in Section 2 is a
Markov chain on S: Since revisions occur one at a time, each Markov transition
entails a single step. To describe such transitions, it is useful to introduce the
following notation. Denote by ei a m � 1 vector, with zero elements except for the ith
element, which is set to 1.

Lemma 3. Suppressing s in rið�; sÞ; the Markov transition probabilities satisfy

pss0 ¼ Pr½stþ1 ¼ s0 j st ¼ s� ¼

sk

n
ri

s

n


 �
s0 ¼ s 	 ek þ ei;Pm

i¼1

si

n
ri

s

n


 �
s0 ¼ s;

0 s0as 	 ek þ ei 8i; k:

8>>><
>>>:

Thus a player switches from strategy k to i with probability ðsk=nÞriðs=nÞ: The
term sk=n is a multiplicative factor independent of the payoff idiosyncrasy s:
Limiting behaviour as s-0 is determined entirely by the multinomial choice
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probability riðs=nÞ; and its corresponding exponential cost. Proposition 1 yields the
following:

Corollary 1. For sas0 ¼ s 	 ek þ ei the transition pss0 has exponential cost Ji �
varj:dijp0ðdijÞ:

Inspection of Lemma 3 reveals that there is positive probability of moving between
any two states in a finite number of steps, and hence the Markov chain is irreducible.
Furthermore, since there is positive probability of remaining in a state, established
cycles cannot occur and the chain is aperiodic. These features combine [5] to yield
ergodicity. There exists a unique ergodic distribution ½ps�sAS satisfying ps ¼
limt-N Pr½st ¼ s� independent of any initial conditions. For 2� 2 games, the state
space may be reduced to f0; 1;y; ng; the strategy revision process becomes a simple
birth–death chain, and the ergodic distribution is easy to characterise.8 For m42;
however, the analysis is more complex. Following KMR [8] and Young [14], the
graph-theoretic approach of Freidlin and Wentzell [4] is employed.

The Freidlin and Wentzell [4] technique constructs a directed graph on the state
space S with edge weights corresponding to Markov transition probabilities. The
directed edge set EDS � S has weights p : E/Rþ; where the first and second
coordinates represent source and target nodes, respectively. A tree rooted at s is a set
of edges hDE such that each node s0as has a unique successor. All sequences of
edges lead to s; which has no successor. The collection of trees rooted at s is Hs: The
weight of such a tree h is wh and the combined weight of all trees rooted at s is qs

where

wh ¼
Y

ðr;r0ÞAh

prr0 and qs ¼
X
hAHs

wh:

At each step of the Markov chain, a route opens from each node to another. This
yields a directed edge set on the state space. Restricting to rooted trees gives route
sets which eventually lead to a node s: From Freidlin and Wentzell [4, Chapter 6,
Lemma 3.1]:

Lemma 4. The ergodic distribution m satisfies

ms ¼
qsP

s0AS qs0
¼

P
hAHs

Q
ðr;r0ÞAh prr0P

s0AS

P
hAHs0

Q
ðr;r0ÞAh prr0

:

This lemma provides an immediate closed form for the invariant distribution. The
relative weights of any two states in this distribution may be assessed by considering
the ratio qs=qs0 : Notice that the weight of a tree is the product of transition
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probabilities. The exponential cost of this product may be calculated by summing the
component costs.

Lemma 5. Denote css0 ¼ cðpss0 Þ: The exponential cost of a tree h is cðwhÞ ¼P
ðs;s0ÞAh css0 :

Combining this result with the characterisation of the ergodic distribution from
Lemma 4 permits the examination of long-run behaviour as s-0: First, only the
least cost rooted trees for each state s are of importance in the limit. To see this, use
the properties of exponential cost from Lemma 2: cðqsÞ ¼ minhAHs

cðwhÞ: Second, if
state s has a lower cost tree than the lowest cost tree from state s0; then state s has
infinitely more weight in the limit. Again from Lemma 2: cðqsÞocðqs0 Þ )
lims-0½qs0=qs� ¼ 0: Attention is focused, therefore, on the set of states S� with least
cost rooted trees

S� ¼ sAS: min
hAHs

fcðwhÞgpmin
s0AS

min
h0AHs0

fcðwh0 Þg
� �

:

Allowing s-0; these states are ‘‘selected’’ in the ergodic distribution. Formally:

Proposition 2. States in S� attract all weight in the limit: lims-0

P
sAS� ms ¼ 1:

Proposition 2 allows equilibrium selection to take place. If the set S� consists of a
single state corresponding to a pure strategy Nash equilibrium, then (for sufficiently
small s) that equilibrium will be played almost always in the long run. Finding such
an equilibrium involves a search for the least cost rooted tree—the exact approach
taken by KMR [8] and Young [14]. The difference here is that the cost of each non-
best response transition is no longer a constant, but rather a function of the expected
payoffs for each available pure strategy.

5. An application to dominated strategies

The simplest possible context for the application of strategy revision processes is
the class of symmetric 2� 2 coordination games, where m ¼ 2; a114a21 and
a224a12: Without loss of generality set a11 	 a214a22 	 a12 so that the pure strategy
Nash equilibrium ð1; 1Þ is risk-dominant [7]. Such a game is strategically equivalent
to the pure coordination game with payoffs

½aij � ¼
a11 0

0 a22

" #
where a114a22 ) a22

a11 þ a22
o
1

2
: ð2Þ

In this case, the state space for a single-population strategy revision process is S ¼
fsAZ2

þ: s1 þ s2 ¼ ng: A best response dynamic with mistakes [8,14] selects the

equilibrium ð1; 1Þ: To see why, first note that the process becomes ‘‘locked in’’ to
both s ¼ ðn; 0Þ and s ¼ ð0; nÞ; which correspond to the pure strategy Nash equilibria.
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It is a best response to choose strategy 1 whenever s1=n4a22=ða11 þ a22Þ: Hence
Jna22=ða11 þ a22Þn mutations are required to escape from the equilibrium ð2; 2Þ:9 On
the other hand Jna11=ða11 þ a22Þn mutations are required to escape from the
equilibrium ð1; 1Þ: Hence it is more difficult to move from ð1; 1Þ to ð2; 2Þ than vice
versa.

This selection result continues to hold under the idiosyncratic framework
described here. The steps required to escape from the two equilibria are exactly as
calculated above. In addition, the cost (or difficulty) of taking such steps depends
upon the square of the expected payoff differences. For example, the exponential

cost of a move away from state s ¼ ðn; 0Þ is a2
11=2 (this follows from Eq. (1)).

Similarly, the exponential cost of a move away from state s ¼ ð0; nÞ is a2
22=2oa2

11=2:
Intuitively, the two effects reinforce each other to confirm the selection result.10

Notice that both effects require a comparison of the relative performance of
strategies 1 and 2.

In larger games these two effects need no longer operate in the same direction.
This may be illustrated by the addition of a dominated strategy:

½aij � ¼
a11 0 0

0 a22 a22

a11 	 e 	e 	e

2
64

3
75: ð3Þ

Notice that strategy 3 is strictly dominated by strategy 1.11 A best response to
strategy 3 however, is strategy 2. This dominated strategy provides an additional
route via which the population can move from equilibrium ð1; 1Þ to equilibrium
ð2; 2Þ:

A mistake-driven process continues to select equilibrium ð1; 1Þ: This is because the
equilibrium remains 1=2-dominant in the sense of Morris et al. [10]. A fraction
a11=ða11 þ a22Þ41=2 of the population must switch strategies to escape from
equilibrium ð1; 1Þ and a fraction a22=ða11 þ a22Þo1=2 must switch to escape from
ð2; 2Þ: 1=2-dominant equilibria (when they exist) continue to be selected in larger
games, as shown by Ellison [3] and Maruta [9]. Importantly, the number of
mutations required to move between equilibria involves a comparison between the
relative performance of strategies 1 and 2 in different population states. Strategy 3 is
dominated, and hence never selected. Its presence may, however, influence the
identity of a best response.12
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9The notation Jyn indicates the smallest integer that is weakly greater than y:
10To calculate the exact selection criterion interior states where both strategies are used in the

population must also be considered. For a more detailed discussion of the relevant issues and a proof of

this selection result, see [11].
11More accurately, strategy 3 is strictly dominated in mean payoffs. There is always some probability

that a revising player finds it optimal to play this strategy.
12 It is well known that the addition of a dominated strategy can affect the selection outcome from a

strategy revision process. The difference here is that the dominated strategy does not affect the 1/2-

dominance of equilibrium ð1; 1Þ:
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This selection result does not hold in the present framework. Suppose the
population state is currently s ¼ ðn; 0; 0Þ: An idiosyncratic tremble of e is all that is
required to convince a revising player to switch to strategy 3, since this strategy is
only a little bit suboptimal relative to strategy 1. This transition has exponential cost

e2=2: For small e this step is easy to take. In contrast, any step away from the state

ð0; n; 0Þ has an exponential cost of at least a2
22=2: Importantly, the exponential cost of

an escape from ð1; 1Þ involves a comparison between the relative performance of
strategies 2 and 3. This is a different combination than that determining the number
of steps required. It is only possible to make this distinction when there are more
than two strategies—hence the need for an examination of larger games. In
conclusion, as long as e is small enough, the relative ease of taking steps away from
equilibrium ð1; 1Þ more than compensates for the larger number of steps required.
Formally:

Proposition 3. Take a 2� 2 symmetric coordination game where strategy 1 is risk-

dominant and add a third strategy. The additional strategy may be constructed so that

(i) the strategy is strictly dominated in mean payoffs, (ii) strategy 1 remains 1=2-
dominant and (iii) strategy 2 is selected as s-0:

The proof of Proposition 3 constructs a dominated strategy in the manner
described in Eq. (3), where e is chosen to be sufficiently small. An upper bound on e
is available, which establishes the required proximity of strategy 3 to strategy 1. The
precise expression is available in the proof to Proposition 3.

Appendix A. Omitted proofs

Proof of Lemma 1. Facing x; the payoff from strategy i is
Pm

j¼1 xjãij : It is chosen

when

pi ¼
Xm

j¼1

xjãijXpk ¼
Xm

j¼1

xjãkj 8kai:

Recalling the assumptions of payoff idiosyncrasy

pi ¼
Xm

j¼1

xjaij þ
Xm

j¼1

xjeijHN
Xm

j¼1

xjaij ; s2
Xm

j¼1

x2
j

 !
:

The homoskedasticity assumption simplifies the analysis. The consequence is that
each strategy yields a payoff with a common variance. Notice

piXpk 3
piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1 x2

j

q X
pkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

j¼1 x2
j

q :
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Denoting this normalised payoff as yi:

yiHN

Pm
j¼1 xjaijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

j¼1 x2
j

q ; s2

0
B@

1
CA:

Strategy selection is thus a realisation of a homoskedastic multinomial probit model
where option i has expectation miðxÞ: The probability of selection is thus

riðx; sÞ ¼ Pr½yiXyj 8jai� ¼Eei
Pr

mi 	 mj þ ei

s
X
ej

s
8jaijei

$ %$ %

¼
Z

N

	N

Y
jai

F z þ dijðxÞ
s

� �( )
fðzÞ dz;

which is a standard multinomial probit choice probability. &

Proof of Lemma 2. Consider m functions fiðsÞ with exponential costs fcig: For x
arbitrarily small, mx is arbitrarily small. Hence

exp
mxþ

Pm
i¼1 ci

2s2

� �Ym
i¼1

fiðsÞ ¼
Ym
i¼1

exp
xþ ci

2s2

� �
fiðsÞ:

From this, the first property of Lemma 2 follows easily. The remaining properties
follow in a similar fashion. &

Proof of Proposition 1. Recall from Lemma 1 that

rið�; sÞ ¼
Z

N

	N

Y
jai

F z þ dij

s

� �( )
fðzÞdz: ðA:1Þ

Write the product of cumulative distributions as a product of densities and hazards

Y
jai

F z þ dij

s

� �

¼
Y

j:dij40

F z þ dij

s

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

cdfs-1

�
Y

jai:dijp0

Fðz þ s	1dijÞ
fðz þ s	1dijÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hazards

�
Y

jai:dijp0

f z þ dij

s

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

densities

:

The product of densities is combined with fðzÞ to obtain

fðzÞ
Y

jai:dijp0

f z þ dij

s

� �
¼ 1

ð2pÞJi=2
exp 	

z2 þ
P

jai:dijp0ðz þ s	1dijÞ2

2

 !
;
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where Ji ¼ 1þ
P

jai Iðdijp0Þ ¼
P

j Iðdijp0Þ: Completing the square yields

z2 þ
X

jai:dijp0

z þ dij

s

� �2

¼ z
ffiffiffiffi
Ji

p
þ
P

jai:dijp0 dij

s
ffiffiffiffi
Ji

p
 !2

þ
P

jai:dijp0 d
2
ij

s2
	
ð
P

jai:dijp0 dijÞ2

Jis2

¼ z
ffiffiffiffi
Ji

p
þ
P

jai:dijp0 dij

s
ffiffiffiffi
Ji

p
 !2

þk2

s2
;

where k2 denotes

k2 ¼
X

j:dijp0

d2ij 	
ð
P

j:dijp0 dijÞ2

Ji

¼ Ji � var
j:dijp0

ðdijÞ:

Notice that in the above summation j : dijp0 includes j ¼ i: Adding the term dii ¼ 0

does not affect the summations, and allows the variance interpretation on the right-
hand side. It is convenient to economise notation as followsY

j:dij40

Fi ¼
Y

j:dij40

F z þ dij

s

� �
and *fðzÞ ¼ f z

ffiffiffiffi
Ji

p
þ
P

jai:dijp0 dij

s
ffiffiffiffi
Ji

p
 !

:

The choice probability (Eq. (A.1)) is now

ri ¼
expð	k=2s2Þ
ð2pÞðJi	1Þ=2

Z
N

	N

*fðzÞ
Y

j:dij40

Fi

Y
j:dijp0

Fðz þ s	1dijÞ
fðz þ s	1dijÞ

dz: ðA:2Þ

Consider cok2: In this case

expð	k2=2s2Þ
ð2pÞðJi	1Þ=2 exp

c

2s2


 �
¼ 1

ð2pÞðJi	1Þ=2 exp 	ðk2 	 cÞ
2s2

� �
-0:

In addition, the integrand of Eq. (A.2) tends to zero and hence

exp
c

2s2


 �
�
Z

N

	N

Y
jai

F z þ dij

s

� �( )
fðzÞ dz-0:

Next consider c4k: In this case

expð	k2=2s2Þ
ð2pÞðJi	1Þ=2 exp

c

2s2


 �
¼ 1

ð2pÞðJi	1Þ=2 exp
ðc 	 k2Þ
2s2

� �
-N: ðA:3Þ

This expression diverges at an exponential rate towards þN: The integral of (A.2)
vanishes to zero, however. The rest of the proof constructs a lower bound on this

integral. It will be shown that this lower bound is polynomial in s	1: Exponential
terms dominate polynomials in the limit, and hence the divergent exponential part of
(A.3) will dominate. First bound the integral of (A.2) by integrating over a subset of
its range. To do this, first find the best alternative to strategy i and denote its
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advantage over i by dH : Hence

dH ¼ max
jai

dji40:

Bound the integral as follows:Z
N

	N

*fðzÞ
Y

j:dij40

Fi

Y
jai:dijp0

Fðz þ s	1dijÞ
fðz þ s	1dijÞ

dz

X

Z s	1dH

0

*fðzÞ
Y

j:dij40

Fi

Y
jai:dijp0

Fðz þ s	1dijÞ
fðz þ s	1dijÞ

dz:

Next bounds are sought on each term in the integrand. First, consider the product of
distribution functionsY

j:dij40

F z þ dij

s

� �
X½FðzÞ�m	Ji :

This achieves a minimum at the lower limit of integration z ¼ 0; yieldingY
j:dij40

F z þ dij

s

� �
X

1

2m	Ji
for

dH

s
XzX0:

Next recall that the hazard ratio f=F is decreasing in its argument. Hence

Y
jai:dijp0

fðz þ s	1dijÞ
Fðz þ s	1dijÞ

p max
jai:dijp0

fðz þ s	1dijÞ
Fðz þ s	1dijÞ

$ %Ji	1

¼ fðz 	 s	1dHÞ
Fðz 	 s	1dHÞ

$ %Ji	1

:

Furthermore, on the range of integration this achieves a maximum at z ¼ 0; yielding

Y
jai:dijp0

fðz þ s	1dijÞ
Fðz þ s	1dijÞ

p
fð	s	1dHÞ
Fð	s	1dHÞ

$ %Ji	1

for
dH

s
XzX0:

On taking the reciprocal, the inequality is reversed, giving a lower bound. Finally,
note Z s	1dH

0

*fðzÞ dz ¼
Z s	1dH

0

f z
ffiffiffiffi
Ji

p
þ
P

jai:dijp0 dij

s
ffiffiffiffi
Ji

p
 !

dz

¼ 1ffiffiffiffi
Ji

p
Z s	1dH

0

dF z
ffiffiffiffi
Ji

p
þ
P

jai:dijp0 dij

s
ffiffiffiffi
Ji

p
 !

¼ 1ffiffiffiffi
Ji

p F
ffiffiffiffi
Ji

p

s
dH þ 1

Ji

X
jai:dijp0

dij

2
4

3
5

0
@

1
A

8<
:

	F
1

s
ffiffiffiffi
Ji

p
X

jai:dijp0

dij

0
@

1
A
9=
;:

ARTICLE IN PRESS
D.P. Myatt, C. Wallace / Journal of Economic Theory 113 (2003) 286–301298



The second term vanishes

lim
s-0

F
1

s
ffiffiffiffi
Ji

p
X

jai:dijp0

dij

2
4

3
5

0
@

1
A ¼ 0

since dijo0 for some j: Next notice that

dH4
ðJi 	 1ÞdH

Ji

4

P
jai:dijp0 dji

Ji

¼ 	
P

jai:dijp0 dij

Ji

) lim
s-0

F
ffiffiffiffi
Ji

p

s
dH þ 1

Ji

X
jai:dijp0

dij

2
4

3
5

0
@

1
A ¼ 1:

Having obtained a bound for
R s	1dH

0
*fðzÞ dz; the bounding components are

assembledZ
N

	N

*fðzÞ
Y

j:dij40

Fi

Y
jai:dijp0

Fðz þ s	1dijÞ
fðz þ s	1dijÞ

dz

X

Z s	1dH

0

*fðzÞ
Y

j:dij40

Fi

Y
jai:dijp0

Fðz þ s	1dijÞ
fðz þ s	1dijÞ

dz

X
1

2m	Ji

Z s	1dH

0

*fðzÞ
Y

jai:dijp0

Fðz þ s	1dijÞ
fðz þ s	1dijÞ

dz

X
1

2m	Ji

Fð	s	1dHÞ
fð	s	1dHÞ

$ %Ji	1Z s	1dH

0

*fðzÞ dz

-
sJi	1

2m	Ji
ffiffiffiffi
Ji

p
dJi	1

H

;

where the last step employs the asymptotic linearity of normal hazards.13 This is

polynomial in s	1 and dominated asymptotically by the exponential term, soZ
N

	N

Y
jai

F z þ dij

s

� �( )
fðzÞdz � exp

c

2s2


 �
-N;

which completes the proof. &

Proof of Lemma 3. Start in state s: The population updates one player at a time, and
hence must lose a strategy and gain a (possibly identical) strategy. It loses strategy k

with probability sk=n; and the entrant adopts strategy iak with probability riðs=nÞ:
Alternatively, the process may not shift, requiring any strategy to be lost and
replaced by the same, yielding the summation. &

Proof of Lemma 5. Follows directly from Lemma 2. &
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Proof of Lemma 4. From [4]. &

Proof of Proposition 2. Define cmin ¼ mins0AS minh0AHs0 fcðwh0 Þg: This is the weight of
the least cost rooted tree across all nodes. Take a state sAS and s0eS: Using Lemma
2 the cost of qs is cðqsÞ ¼ minhAHs

cðwhÞ ¼ cmin: Similarly, the cost of qs0 is cðqs0 Þ ¼
minh0AHs0 cðwh0 Þ4cmin: Hence, again using Lemma 2 it must be the case that

lims-0 ½qs0=qs� ¼ 0 ) lims-0 ms0 ¼ 0: Thus all states outside S have zero weight in
the limit, which corresponds to the desired result. &

Proof of Proposition 3. Take a 2� 2 coordination game as required. This may be
normalised to yield a pure coordination game as given in Eq. (2), where ð1; 1Þ is risk-
dominant. Add a third dominated strategy, as shown in Eq. (3). It is first necessary
to check that the equilibrium ð1; 1Þ is 1/2-dominant. Strategy 1 must be a best
response to any mixed strategy satisfying x1X1=2: In this case, the payoff from
strategy 1 is x1a11: The payoff from strategy 2 is ðx2 þ x3Þa22 ¼ ð1	 x1Þa22ox1a11;
following from the risk dominance of ð1; 1Þ in the original 2� 2 game. It remains to
show that strategy 2 is selected as s-0:

Begin by considering a tree rooted at state s ¼ ðn; 0; 0Þ: This requires at least one
step away from state s0 ¼ ð0; n; 0Þ: A best response to state s0 is strategy 2, and hence
a step away requires a revising player to choose either strategy 1 or strategy 3. It is
easiest for such a player to choose strategy 1. Both strategies 1 and 2 are weakly
better responses than strategy 1, and hence J1 ¼ 2: Application of Proposition 1

shows that the cost of this transition is a2
22=2: This provides a lower bound for the

weight of any tree rooted at s: Next, consider a tree rooted at s0: Such a tree must
provide an ‘‘escape route’’ from s: Starting at s; construct a sequence of Jna11=ða11 þ
a22Þn transitions where at each step a revising player chooses strategy 3 rather than
strategy 1. At each step on this route, strategy 1 is a better response than strategy 3.
The difference in expected payoffs is e; and hence the cost of each step is at most

e2=2:14 At the end of this route, it is a best response to choose strategy 2. Hence all
other states can be mapped to a best response with zero exponential cost. This yields

a tree with an exponential cost of at most e2Jna11=ða11 þ a22Þn=2: This tree has a

lower cost than any tree rooted at s if e2Jna11=ða11 þ a22Þnoa2
22: This inequality will

hold for e sufficiently small. In fact, a tighter bound is available. An application of
Propositions 1 and 2 reveals that a sufficient condition is

e2o
XIna22=ða11þa22Þm

k¼0

½ka11 	 ðn 	 kÞa22�2

k2 þ ðn 	 kÞ2

" # XIna11=ða11þa22Þm

k¼0

n2

k2 þ ðn 	 kÞ2

" #,
;

where Iym is the greatest integer weakly below y: &
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jump directly to strategy 2. This can only lower the cost of such a transition.
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