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Abstract. Agents are drawn from a large population and matched to play a sym-
metric 2×2 coordination game, the payoffs of which are perturbed by agent-specific
heterogeneity. Individuals observe a (possibly sampled) history of play, which forms
the initial hypothesis for an opponent’s behaviour. Using this hypothesis as a start-
ing point, the agents iteratively reason toward a Bayesian Nash equilibrium. When
sampling is complete and the noise becomes vanishingly small, a single equilib-
rium is played almost all the time.A necessary and sufficient condition for selection,
shown to be closely related (but not identical) to risk-dominance, is derived. When
sampling is sufficiently incomplete, the risk-dominant equilibrium is played irre-
spective of the history observed.
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1 Introduction

Many games possess multiple Nash equilibria. Absent a suitable refinement con-
cept, many theorists encourage the examination of the context in which a game is
played.1 In particular, the environment may provide a guideline for players. If this
guideline specifies a particular Nash equilibrium, an agent can do no better than
to play their part in it. This leaves open the question of how such an environment
might arise.

Players may look to history to inform their decisions and this can, therefore,
provide a suitable context. Of particular relevance are the actions taken previously

� The authors thank Tom Norman, Kevin Roberts, Hyun Shin, Peyton Young, the editor and an
anonymous referee for helpful comments.
Correspondence to: C. Wallace

1 See for example Binmore (1994) or Schelling (1960).
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by others. Observation of these actions allows an agent to infer the typical play
of a game and to select a strategy contingent on observation. The realised action
becomes part of history and history thus evolves. Jointly modelling the interdepen-
dence of history and action choice allows selection between equilibria. This is the
approach of the adaptive learning literature epitomised by the work of Kandori,
Mailath, and Rob (1993, KMR). They specify a dynamic in which entrants respond
to an existing population’s strategy frequency. Such a dynamic is path-dependent
– initial conditions determine long-run behaviour. In response the authors achieve
ergodicity via the introduction of mutations (agents make mistakes when choosing
their strategies). The invariant distribution of the resulting process is examined as
mutations vanish and an equilibrium is selected irrespective of initial conditions.

The adaptive learning approach is subject to a number of critiques. Players
form beliefs naı̈vely and also fail to choose optimal actions given those beliefs. The
latter objection is highlighted by Myatt and Wallace (2002a,b) in which agents differ
rather than err.2 The focus in the present paper will be on the former objection. If
a player repeatedly interacts with randomly selected members of the population,
then adopting a best response to the incumbent strategy frequency may not be
unreasonable. However, when an agent expects a single play against an opponent
who simultaneously selects a strategy, this is somewhat suspect. Young (1993a)
specifies a model where pairs of entrants, following a (sampled) observation of
history, independently choose strategies and play a single game. In this situation,
an agent might be expected to reason more carefully.

This approach is taken here. Observed frequencies no longer provide a theoret-
ical opponent. Rather, context seeds the beliefs of a player in the following way:
An agent initially conjectures that their opponent will act optimally given their ob-
servation. This yields a new hypothesis for an opponent’s play. The agent, bearing
this in mind, calculates a new best response. Stopping here would yield an antici-
patory dynamic in the sense of Selten (1991). In his model, agents think “one step
ahead” of some baseline mode of behaviour.3 But what if agents anticipate such
anticipation? Selten (1991) says:

“Nevertheless, it is of interest to ask the question whether a learning process
with anticipated anticipations has different stability properties [ . . . ] the
change in strategies from one period to the next may be decomposed into
a first-order effect due to the observed strategy [ . . . ] and a second-order
effect due to the anticipated change to the opponent’s strategy. To these
effects one may add a third-order effect due to the anticipated effect of the
opponent’s anticipation . . . ”

2 The former paper (Myatt and Wallace 2002a) is referred to as MW henceforth. Ergodicity of the
adaptive learning process requires occasional contrarian behaviour, where entrants choose against an
established convention. An explanation for such behaviour is idiosyncrasy on the part of individuals,
and this is the approach employed in the current paper.

3 Selten (1991, p. 118) refers to a baseline mode of play as a “preliminary model” of behaviour.
This preliminary model is not necessarily best-response play, but simply assumes that players choose a
relatively better response. Following the “one step ahead” reasoning of agents, an anticipatory learning
process is obtained. For a sufficiently slow adjustment process, equilibria are locally stable.
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Following this idea, players in the current model anticipate the anticipations of
their opponents. Anticipating this “third-order effect,” an agent constructs a best
response to this anticipation, and so on. Thus, entrants engage in an iterative best
response process the limit of which depends upon the starting point. The starting
point is provided by history. Such reflection upon the environment and the reasoning
procedure of others is referred to as “sophisticated play.” Stahl (1993) takes a related
approach. In his terminology, a player who thinks n-steps ahead is “smartn.”4,5 In
the present paper, players reason indefinitely with a starting point determined by
history.

Full rationality might seem a more appropriate response to the naı̈veté inherent
in the adaptive learning literature. Unfortunately, it is not. A rational player would
ignore payoff-irrelevant information and proceed directly to an equilibrium,6 leav-
ing the modeller unable to select between equally “rational” equilibria. The sug-
gestion here is that agents can use observations of past play to coordinate on an
equilibrium via the use of some reasonable thought experiment. This is motivated
by a desire to model the way in which individuals might think strategically. Unlike
full rationality, sophisticated play is a behavioural postulate – a common feature
of adaptive and evolutionary research. But do agents really have the computational
ability suggested in the model? Although players reason indefinitely, the inten-
tion here is to capture a situation in which agents think to some extent about their
opponent’s behaviour.7

When sampling is complete, agents observe identical strategy frequencies and
this is common knowledge. The iterative reasoning process converges to a (history
dependent) Bayesian Nash equilibrium of the underlying stage game. As strategies
in such Bayesian equilibria are trigger rules, either action may be realised.Allowing
the individual-specific heterogeneity to vanish, these equilibria correspond to the
pure Nash equilibria of the unperturbed game. With vanishing noise, only one of
the actions is played almost all of the time. If an equilibrium is both risk-dominant
(Harsanyi and Selten, 1988) and would remain so if the payoffs were normalised
by their relative variances, then it is selected. If this is not the case, then the risk-
dominated equilibrium may be selected. This tends to occur when the individual-
specific payoff heterogeneity is relatively high in the risk-dominant equilibrium. To
illustrate this idea, an application to a public-goods contribution game is considered.

4 Stahl (1993) follows Selten (1991) by focusing on local stability, rather than equilibrium selection.
He shows that, for sufficiently slow adjustment speeds, rationalizable strategies will be locally stable.
Furthermore, evolution will “weed out” excessive smartness in the long run, since “being right is just
as good as being smart” (Stahl 1993, p. 614).

5 Sáez-Martı́ and Weibull (1999) present a model in which the agents are “clever.” They play a
bargaining game after Young (1993b), rather than a coordination game. Some of the agents play simple
myopic best responses, but some are clever in the sense that they play a best response to this myopic
best response. Matros (2001) extends this idea to general two player games. The difference here is that
the agents continue this thought process by considering best responses to best responses, and so on.

6 It is not, of course, quite as simple as that. Aumann and Brandenburger (1995) provide a detailed
account of the conditions necessary for rational players to adopt Nash equilibrium strategies.

7 In fact, many of the conclusions are largely unaffected by allowing less sophistication on the part
of the players – as long as the process is allowed to iterate sufficiently many times. Agents are allowed
to reason indefinitely purely for mathematical convenience.
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When sampling is incomplete, selection results may radically differ. Agents no
longer observe common histories, and hence they must carefully consider not only
their opponent’s action but also their opponent’s beliefs. An infection argument
along the lines of Morris, Rob, and Shin (1995) applies. An agent initially conjec-
tures a best response to the observed strategy frequency. They know that, with high
probability, an opponent will observe a different frequency. Such an observation
may generate a different strategy choice and hence the initial player might wish
to switch strategy. With sufficiently many iterations of reasoning, a single strategy
may be adopted by all entrants irrespective of their observations. In fact, when
sampling is sufficiently incomplete all players adopt the risk-dominant equilibrium
regardless of history. Moreover, this result holds without resorting to noise.

Section 2 outlines the model. The analysis with full sampling takes place in
Section 3 and with incomplete sampling in Section 4. Section 5 contains some
concluding remarks.

2 The model

The model is based upon a symmetric 2×2 coordination game with generic payoffs,
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where a > c and d > b ensure that the game has two pure strategy Nash equilibria
(1, 1) and (2, 2).8 Without loss of generality, it is assumed that a − c > d − b,
ensuring that the equilibrium (1, 1) is risk dominant (Harsanyi and Selten, 1988).
Players care only about the difference in expected payoffs when making a choice,
and hence the coordination game is strategically equivalent to the pure coordination
game on the right hand side of Equation (1). It is further without loss of generality to
set b = c = 0 throughout. In this formulation, the mixed strategy Nash equilibrium
entails mixing probabilities of [x∗, 1 − x∗] where x∗ = d/(a + d) < 1/2 since
a > d by assumption.

The payoffs a and d represent mean utilities. To generate a Bayesian game, any
individual player has idiosyncratic payoffs ã and d̃, generated by the addition of
normally and independently distributed Harsanyian (1973) payoff trembles:

ã = a+ σεa

d̃ = d+ σεd
where

[
εa

εd

]
∼ N

([
0
0

]
,

[
ξ2a γξaξd

γξaξd ξ2d

])
.

The parameters ξa and ξd allow the variance of the trembles to be strategy profile
specific. Section 6 of Blume (1999) offers a similar “random utility” approach. In

8 The genericity requirement is for convenience only, helping to eliminate integer problems and
hence simplify the exposition. Such integer problems are avoided when dn/(a + d) /∈ Z for n ∈ Z.
For this to hold it is sufficient to assume that a/d is an irrational number.
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his model any payoff noise is added directly to the expected payoff difference of
the two pure strategies, rather than to the payoffs from particular strategy profiles.
Such a specification is equivalent to setting γ = −1 and ξa = ξd. The same
observation can also be made of related papers by Brock and Durlauf (2001) and
Blume and Durlauf (2001). The parameter σ is a common scaling factor which
is allowed to vanish for the limiting results of Section 3. The normal distribution
proves convenient for the subsequent analysis.9 Its crucial property, however, is the
unboundedness of the support, allowing either strategy to be dominant with some
probability.

The game is played by a finite population of n players. At the beginning of a
period each player simultaneously updates their strategy. Alternatively, this can be
interpreted as a new group of players replacing last period’s entire population. Each
new entrant (or player updating) observes the strategy frequency of the population
in a sample of size s ≤ n taken from last period’s play. The agent considers playing a
game with a prospective opponent who also observes a (possibly different) sample
of size s. In particular, the iterative procedure outlined below takes place in the
agent’s mind, and a strategy is selected. This agent, along with their new strategy,
then becomes part of the updated population, and the whole process repeats itself.
Denote the number of individuals playing strategy 1 as z, a member of the finite
state space Z = {0, ..., n}. Computation of the probability that an agent chooses
either strategy yields a Markov chain on Z.

In the dynamic described above, all players simultaneously update. This coin-
cides with the approach of KMR (1993). If agents were to update alone and enter
a population that was essentially static in strategy frequency, it might be more rea-
sonable for them to simply play a best response to the present state, as in KMR
(1993) and Young (1993a). This is the methodology of MW (2002a) with play-
ers updating sequentially. When there is simultaneous updating, however, it may
be more reasonable to assume that players would think very carefully about their
planned action. In particular they would be concerned that a prospective opponent
might also base their decision upon observations of history. To some extent, Young
(1993a) adopts such an idea. Taking this a step further, a sophisticated player might
act in the way described below.

Agents begin (as in previous work) by hypothesising a best reply to the strategy
frequency of their sample. The agent conjectures a similar response from their
opponent. Having calculated this, the agent can formulate a best response to this
postulated behaviour.10 An analogous thought experiment is anticipated for their
opponent. Bearing in mind the possibly different sample of a prospective opponent
an agent will iteratively reason until convergence. More formally, agents play a
static Bayesian game where their private information is both the realised payoffs

9 For σ → 0 the key features are the asymptotic properties of the densities and hazard rates of
the disturbances. Thus any other distribution sharing these features will lead to similar results. In fact,
the logistic distribution produces identical results – see Appendix A. It is also worth noting that full
generality of trembles, particularly allowing trembles to vary by state, as Bergin and Lipman (1996)
have shown, would lead to inconclusive results.

10 In Sáez-Martı́ and Weibull (1999) and Matros (2001), some of the agents conduct only one iteration,
while some play simple myopic best responses.
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and the observed sample. A myopic strategy profile initialises an iterative best
response process which leads to a Bayesian Nash equilibrium.11 This equilibrium
generates the actual behaviour of the agent.

3 Analysis with complete sampling

3.1 Entrant response and Bayesian Nash equilibria

When selecting a strategy a player is concerned with the strategy choice of an
opponent. A sufficient statistic for a player’s beliefs about an opponent’s behaviour
is x, the probability with which strategy 1 is played. The expected payoffs from
strategies 1 and 2 when an opponent plays 1 with probability x are respectively:
x(a+ σεa) and (1 − x)(d+ σεd).

If a player believes an opponent will play strategy 1 with probability x then it
is optimal to reply with the same whenever the former is bigger than the latter – a
natural trigger rule. This occurs whenever:

εd(1 − x) − εax <
ax− d(1 − x)

σ

The left hand side is normally distributed with zero mean and variance: x2ξ2a +
(1−x)2ξ2d −2x(1−x)γξaξd. The best response to a conjecture of xwill therefore
be strategy 1 with probability:

Pr [1|x] = Φ

(
ax− d(1 − x)

σ
√
x2ξ2a + (1 − x)2ξ2d − 2x(1 − x)γξaξd

)

where Φ is the standard Gaussian distribution. Notation is simplified by the follow-
ing:

Definition 1. Define κ(x) as:

κ(x) =
ax− d(1 − x)√

x2ξ2a + (1 − x)2ξ2d − 2x(1 − x)γξaξd
(2)

Using this notation, the above can be summarised in a convenient Lemma:

Lemma 1. If an agent plays strategy 1 with probability x, then with probability
ρ (x, σ) = Φ (κ (x) /σ) the optimal response will be strategy 1.

11 This kind of iterative thought process may not be too distant from the way in which individuals
actually reason. Kinderman, Dunbar, and Bentall (1998) have shown that four levels of such reasoning
is not uncommon among adults. Certain professions are conducive to an even greater degree of recursive
empathy. Novelists may be able to achieve five or more levels of interactive reasoning, as they place
themselves in the minds of their characters. For further details see the survey of Dunbar (1996).
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a b

Fig. 1a,b. Bayesian Nash equilibria. a Equilibria for various σ. b Convergence to a Stable BNE

Ignoring for the moment the observations of agents, consider the game in iso-
lation. The static game is one of incomplete information with uncertainty over the
payoffs. In such a game, the Bayesian Nash equilibria correspond to fixed points
of the mapping x �→ ρ (x, σ). Since these equilibria play an important rôle in the
following analysis a short examination of their properties is necessary. In particu-
lar, interest lies in the case where the Harsanyian perturbations are small (σ → 0).
Lemma 2 investigates (the proof is in Appendix B):

Lemma 2. For σ sufficiently small there are three Bayesian Nash equilibria of the
game, corresponding to fixed points of x �→ ρ (x, σ) in the neighbourhood of 0, x∗

and 1. They converge to these points as σ ↓ 0.

This lemma is illustrated in Figure 1a. As σ → 0, Φ (κ (x) /σ) crosses the 45
degree line at three points in the neighbourhood of 0, x∗ and 1.12

3.2 The reasoning process with full sampling

Lemma 2 establishes the existence and number of Bayesian Nash equilibria in the
game. To select between them, an iterative best response procedure is constructed
with the sophisticated nature of the players in mind. Note there is still no private
information other than payoffs at this stage since agents obtain the same (complete)
sample of the population. Hence a symmetric strategy profile can be summarised by
the probability x that an individual plays strategy 1. Suppose an opponent initially
is conjectured to play strategy 1 with probability x0. The probability strategy 1 is
played as a best response to this is x1 = ρ (x0, σ) by Lemma 1. The sophisticated
play paradigm suggests an iterative process with xt = ρ (xt−1, σ). The agent
iteratively calculates best responses to previous best responses until the process
converges, yielding a sequence of probabilities xt.

12 All figures are evaluated from the following example: a = 3, d = 2, and so x∗ = 2/5. Two
specifications for ξa and ξd are used. The first is ξa = ξd = 1, the second is ξa = 2 and ξd = 3/4.
For both γ = 0.
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Consider now the limiting behaviour of such a procedure. Further suppose
that σ is small enough such that there are three Bayesian Nash equilibria in the
neighbourhood of 0, x∗ and 1 by Lemma 2. Label these fixed points xL, xM and
xH respectively.

Lemma 3. The limiting behaviour of the best response process satisfies:

xt →


xL x0 < xM

xM x0 = xM

xH x0 > xM

Proof. Take x0 ∈ (xM , xH). In this range, xH > ρ (x, σ) > x. So xt =
ρ (xt−1, σ) > xt−1. ρ (·, σ) is strictly increasing and continuous. {xt}∞

t=0 is an
increasing sequence bounded by xH . By continuity limt→∞ xt = xH . A similar
argument holds for x0 /∈ (xM , xH). ��

The process is illustrated in Figure 1b. For a given starting point the process
converges to one of the two stable Bayesian Nash equilibria. This starting point is
given by the agents’observations of the current population state. With full sampling
this entails an identical observation of s = n individuals’ actions.

Lemma 4. If agents observe i players out of n playing strategy 1 then, for suffi-
ciently small σ, the sophisticated reasoning process converges to xL for i < 	nx∗

and xH for i ≥ 	nx∗
.13

Proof. For σ small enough, xM is sufficiently close to x∗ to avoid discretisation
problem. Otherwise follows from Lemma 3. ��

When an agent observes a reasonably high proportion of strategy 1 players,
x0 ∈ (xM , xH), they know their prospective opponent will also have observed a
high proportion of strategy 1 players. They initially conjecture that their opponent
will play a myopic best response to the population frequency. Knowing this, their
opponent considers it more likely that the agent will play strategy 1, and so on.
Once the fixed point is reached (xH ), the agent best responds with strategy 1 with
probability exactly equal to xH from the perspective of their opponent, and hence
the process comes to a halt.

3.3 The ergodic distribution and equilibrium selection

Continuing under the assumption that there is no private information to a player
aside from their payoffs (s = n), Lemma 4 shows that the sophisticated reason-
ing process induces each agent to play the same Bayesian Nash equilibria. The
particular equilibrium played is contingent upon the (common) history observed.
Furthermore, the probability distribution over an agent’s actions is governed by

13 The notation �u� indicates the smallest integer above u. More formally, �u� = min{k ∈ Z :
k ≥ u} and, for later reference, �u� = max{k ∈ Z : k ≤ u}; u /∈ Z ⇒ �u� > �u�.
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the strategy frequencies of the equilibrium. Hence the population state in any pe-
riod determines which of the equilibria is played. This determines the state in the
following period via the distribution over strategies implied by the equilibrium.
Throughout, σ is assumed small enough for the lemmas of Sections 3.1 and 3.2 to
apply, so that below (respectively above) some point agents play a Bayesian Nash
equilibrium corresponding to xL (respectively xH ).

In a 2 × 2 coordination game the state space can therefore be reduced to a two-
state model. Throughout the remainder, these two states will be referred to (rather
loosely) as “basins”. Recall the original state space Z = {0, 1, ..., n} where z ∈ Z
is the number of agents playing strategy 1.

Definition 2. For the simultaneous updating dynamic define the Markov state space
as Z∗ = {L,H} with generic element z∗. The transition probabilities are given
by: pij = Pr

[
z∗
t+1 = j | z∗

t = i
]
. The associated Markov transition matrix is:

P =

[
pLL pLH

pHL pHH

]

This reduced form is equivalent to L = {0, 1, ..., 	nx∗
 − 1} ⊂ Z and H =
Z − L. Further:

z∗ =

{
L z < 	nx∗
 and z ∈ Z

H z ≥ 	nx∗
 and z ∈ Z

Given z∗
t = H , zt ∼ Bin (xH , n). It follows that:

Lemma 5. The reduced form Markov transition probabilities satisfy:

pLH =
n∑

i=�nx∗�

(
n

i

)
xi

L (1 − xL)n−i
pLL = 1 − pLH

pHL =
�nx∗�−1∑

i=0

(
n

i

)
xi

H (1 − xH)n−i
pHH = 1 − pHL

Proof. State H is reached if zt+1 ≥ 	nx∗
. Strategy 1 is played with probability
xL in state L. Applying the binomial distribution, obtain pLH . Find the remaining
terms similarly. ��

This is a simple Markov process with only two states and pij > 0 ∀i, j. In such
cases the ergodic distribution satisfies:

µL =
pHL

pHL + pLH
and µH =

pLH

pHL + pLH

µi is the probability that the Bayesian Nash equilibrium corresponding to xi is
played in the long run. Interest lies in the relative frequencies of these two equilibria.
Applying Lemma 5:
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Lemma 6. The relative frequency of states H and L in the ergodic distribution
satisfies:

µH

µL
=

∑n
i=�nx∗�

(
n
i

)
xi

L (1 − xL)n−i∑�nx∗�−1
i=0

(
n
i

)
xi

H (1 − xH)n−i
(3)

Note that both xL and xH depend upon σ. The next task is to examine the
relative ergodic frequency as σ → 0, thus enabling selection between the two
available equilibria.

From Lemma 2, xL → 0 and xH → 1 as σ → 0. Thus both numerator and
denominator in Equation (3) tend to zero as σ vanishes. Investigation of the limiting
behaviour begins with the following lemma.

Lemma 7. The ratio in Equation (3) as σ → 0 becomes:

lim
σ→0

µH

µL
=

	nx∗
 + 1
n− 	nx∗
 × lim

σ→0

x
�nx∗�
L

(1 − xH)n−�nx∗�+1 (4)

Proof. Multiplying and dividing the numerator of Equation (3) by x�nx∗�
L :

n∑
i=�nx∗�

(
n

i

)
xi

L (1 − xL)n−i = x
�nx∗�
L

n∑
i=�nx∗�

(
n

i

)
x

i−�nx∗�
L (1 − xL)n−i

= x
�nx∗�
L


(

n

	nx∗

)

(1−xL)n−�nx∗� +
n∑

i=�nx∗�+1

(
n

i

)
x

i−�nx∗�
L (1−xL)n−i


As σ → 0, xL → 0 and hence:

n∑
i=�nx∗�+1

(
n

i

)
x

i−�nx∗�
L (1 − xL)n−i → 0 and

(
n

	nx∗

)

(1 − xL)n−�nx∗�

→
(

n

	nx∗

)

Performing a similar operation on the denominator to obtain:

lim
σ→0

µH

µL
=

n!
(n− 	nx∗
)! 	nx∗
!

(n− 	nx∗
 − 1)! (	nx∗
 + 1)!
n!

× lim
σ→0

x
�nx∗�
L

(1 − xH)n−�nx∗�+1 =
	nx∗
 + 1
n− 	nx∗
 × lim

σ→0

x
�nx∗�
L

(1 − xH)n−�nx∗�+1

Which is the desired result. ��
When µH/µL is large, the Bayesian Nash equilibrium involving probabilities

xH and 1 − xH is played most of the time. For vanishing σ agents play strategy 1
with high probability. The next definition formalises this idea in the limit case as
σ → 0.
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Definition 3. Strategy 1 dominates for vanishing heterogeneity if
limσ→0 µH/µL = +∞. Strategy 2 dominates for vanishing heterogeneity
if limσ→0 µH/µL = 0.

The following critical proposition establishes exactly which equilibrium will
dominate for vanishing heterogeneity in terms of the parameters of the model.

Proposition 1. If (n− 	nx∗
 + 1)κ (1)2 > 	nx∗
κ (0)2 then strategy 1 domi-
nates for vanishing idiosyncrasy. If the reverse holds then strategy 2 dominates.

Proof. Recall that xi satisfies the equality xi = ρ (xi, σ) = Φ (κ (xi) /σ). Substi-
tuting into the second term on the right hand side of Equation (4):

lim
σ→0

x
�nx∗�
L

(1 − xH)n−�nx∗�+1 = lim
σ→0

Φ (κ (xL) /σ)�nx∗�

(1 − Φ (κ (xH) /σ))n−�nx∗�+1

The first term is just a constant and hence is irrelevant. Separating the above into
normal densities and hazards rates the following obtains:

lim
σ→0

(
φ (κ (xH) /σ)

1−Φ (κ (xH) /σ)

)n−�nx∗�+1(
Φ (κ (xL) /σ)
φ (κ (xL) /σ)

)�nx∗�
φ (κ (xL) /σ)

�nx∗�

φ (κ (xH) /σ)n−�nx∗�+1

Now as σ → 0, κ (xL) → κ (0) < 0 and κ (xH) → κ (1) > 0. The limit becomes:

lim
σ→0

(
φ(κ(1) /σ)

1 − Φ(κ(1) /σ)

)n−�nx∗�+1(
Φ(κ(0) /σ)
φ(κ(0) /σ)

)�nx∗�
φ(κ(0) /σ)�nx∗�

φ(κ(1) /σ)n−�nx∗�+1

Note that κ (0) /σ → −∞ and κ (1) /σ → +∞ as σ → 0. The hazard rate
of the normal is asymptotically linear. Therefore the first two terms in the above
expression are asymptotically polynomial. The third term is exponential however
and dominates in the limit. Examining this crucial term:

φ (κ (0) /σ)�nx∗�

φ (κ (1) /σ)n−�nx∗�+1 ∝ exp

{
−	nx∗
κ (0)2 − (n− 	nx∗
 + 1)κ (1)2

2σ2

}
It follows that:

lim
σ→0

φ (κ (0) /σ)�nx∗�

φ (κ (1) /σ)n−�nx∗�+1 = +∞ ⇔ (n− 	nx∗
 + 1)κ (1)2 > 	nx∗
κ (0)2

i.e. strategy 1 dominates for vanishing idiosyncrasy; the desired result. ��
Proposition 1 holds when the strategy choices of revising players are probit

realisations. Would a similar result hold under alternative choice technologies? It is
natural to consider the logit, as in Blume (1999), since the probit and logit are the
leading binary choice models used by economists. As Appendix A shows, identical
results are available for such a model.

Mistakes do not arise in this model. However, agents have idiosyncratic prefer-
ences and so it may appear to the modeller as if mistakes take place. Mutations, in
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Fig. 2. Endogenously generated “mutations”

this sense, are observed when agents act against the flow of play. That is, an entrant
takes a contrarian action relative to an entrant with mean payoffs. Since all agents
are playing one of two Bayesian Nash equilibria this will occur with probability xL

in any state z ∈ {0, 1, ..., 	nx∗
 − 1} and 1 − xH in any state z ∈ {	nx∗
 , ..., n},
(see Definition 2 and Lemma 5). Figure 2 illustrates these probabilities across the
state space.14

Mutations are state dependent when they vanish to zero at different rates. Here,
mutations arise endogenously and are a function of idiosyncrasy, σ, which vanishes
to zero independently of the state. Nevertheless this model generates state depen-
dence as Corollary 1 (which follows directly from Proposition 1) below shows.

Corollary 1. The model endogenously generates state dependent mutations.

Proof. Consider the limit of the ratio of “mutation” rates:

lim
σ→0

xL

1 − xH
= lim

σ→0

Φ (κ (xL) /σ)
1 − Φ (κ (xH) /σ)

= lim
σ→0

exp

{
−κ (0)2 − κ (1)2

2σ2

}
The first equality follows from the fact that xi satisfies xi = ρ (xi, σ) =
Φ (κ (xi) /σ), and the second from an analogous argument involving normal den-
sities and hazards to that in Proposition 1. Finally note that this limit is either zero
or infinity since κ(0) �= κ(1). ��

Although Proposition 1 yields a precise statement of the selection result, it is
helpful to recast this idea in terms of risk-dominance. Bergin and Lipman (1996)
show that state dependent mutations can result in the selection of any Nash equilib-
rium – selection need not focus on risk-dominance. They conclude that underlying
models of mutation generation are required to provide a convincing defense of any
given equilibrium concept. Nevertheless, risk-dominance is surprisingly robust.

The following corollary establishes the relationship between risk-dominance
and the above result. If an equilibrium is risk-dominant, and remains so when the
payoffs are normalised by their variances, then it is selected. This corroborates the
findings of MW (2002a).

14 Figure 2 uses the second specification for ξa and ξd. It also illustrates equivalent probabilities (or
mutation rates) for the same σ in the MW (2002a) case, and for the KMR (1993) dynamic – which of
course is some constant (ε) across all the states and not, as a result, state-dependent.
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Fig. 3. Full sampling s = 10

Corollary 2. If strategy 1 is risk-dominant (a > d) and a/ξa > d/ξd then it
dominates for vanishing idiosyncrasy.

Proof. Assume strategy 1 is risk-dominant and a/ξa > d/ξd (the proof for strategy
2 is analogous). Using Definition 1:

κ (0)2 =
(−d)2
ξ2d

and κ (1)2 =
a2

ξ2a

If a/ξa > d/ξd then κ (1)2 > κ (0)2. If strategy 1 is risk-dominant then x∗ < 1
2 , so

n (1 − x∗) > nx∗ and hence (n− 	nx∗
 + 1) > 	nx∗
. Therefore by Proposition
1 strategy 1 dominates for vanishing idiosyncrasy. ��

Given some σ > 0 players will reason their way to one of the two stable
Bayesian Nash equilibria. Figure 3 illustrates this process. Which of the equilibria
they play depends upon their starting point – provided by a common observation
of history. In the figure, players rather quickly converge given any possible initial
conjecture.15

Hence the two “basins” are characterised by a different uniform rate of mutation
(see Fig. 2). In this diagram, the first basin – [0, xM ) – is narrower, but has a much
smaller “mistake probability”, determined by the chance of playing Strategy 1 in the
Bayesian Nash equilibrium which involves playing Strategy 2 with high probability.
The second basin – (xM , 1] – is wider and has a relatively high probability of
mutation. The depth and width of the basins determine selection.16 Having played

15 The vertical axis represents the belief probability that an opponent will play strategy 1. This is ini-
tialised by the sample observation and then updated according to the “sophisticated” reasoning process.
For each possible sample observation this process is plotted. It only takes five iterations for convergence
to the Bayesian Nash equilibrium probabilities. The “play strategy 1 with high probability” equilibrium
is reached if more than 40% of the sample is seen to play strategy 1.

16 The depth and width are determined by the parameters of the game. In fact, the widths are determined
by a and d, whilst the depths are determined by a/ξa and d/ξd. The selection result of Proposition
1 essentially shows that it is the equilibrium associated with the greater overall basin “volume” that is
selected. Corollary 2 can be interpreted as showing that a basin which is both wider and deeper clearly
has a greater volume and hence results in selection.
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their part in a Bayesian Nash equilibrium the agents’ actions become part of history
and the whole process repeats itself. As σ → 0, the mutations vanish at different
rates, the Bayesian equilibria become the two pure strategy Nash equilibria, and
selection is achieved.

Interestingly, the results presented here contrast with those of KMR (1993) and
Young (1993a). The reason is that, in those papers, the “mutations” were state-
independent, and hence the basin of attraction for any particular equilibrium has a
constant depth. Thus, it is only the width of a basin of attraction that determines
selection. The present model suggests that the depth of a basin is also of critical
importance. A general measure of basin depth would index the difficulty, as noise
vanishes, of taking a step away from a particular equilibrium. In related work, Myatt
and Wallace (2002b) develop a notion of exponential cost which formalises this
notion.17

3.4 Application to the private provision of a public good

Proposition 1 leads to a prediction that may differ from the usual selection criterion
of risk-dominance. Of course, risk-dominance continues to play a role. If a strategy
is risk-dominant then the number of “mutations” needed to escape its basin of
attraction is relatively large. Of equal importance is the likelihood with which
such mutations take place. In the model presented here, the probabilities of such
mutations are determined by κ(0) and κ(1). These “basin depths” are affected by
the variances of payoffs as well as their means. The role of such variances can be
easily seen in the context of a simple example.

Consider two players who must decide whether or not to contribute to the
production of a public good. In a complete-information game, a contribution costs
k > 0. This generates a benefit of v > k to each player if and only if both choose to
contribute. This generates a coordination problem: A player will wish to contribute
whenever the opponent is expected to contribute. Using C for “contribute” and D
for “don’t” the strategic form is:

C D

C
v − k

v − k

0
−k

D
−k

0
0

0

By inspection, this game has two pure strategy Nash equilibria, (C,C) and (D,D).
There is also a mixed strategy Nash equilibrium in which each player plays C with

17 The incorporation of basin depth helps to explain the similarities between the results here and those
of MW (2002a). Firstly, a risk-dominant equilibrium which remains so after the payoffs are normalised
by their variances will be selected for vanishing heterogeneity. Secondly, when σ > 0, MW (2002a)
conclude that the modes of the ergodic distribution correspond to the Bayesian Nash equilibria of the
underlying stage game. Here, this fact is trivial. Agents reason their way to Bayesian Nash equilibria
via the sophisticated deliberation process. The ergodic distribution consists of 2 atoms, one at each
equilibrium.
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Fig. 4. Equilibrium selection in the public goods contribution game

probability x∗ = k/v. When x∗ < 1
2 , or equivalently k < v

2 , the equilibrium (C,C)
is risk-dominant.

The complete-information game described above abstracts from a more gen-
eral specification in which individual players may differ in their preferences. A
player’s actual payoffs k̃ and ṽ may differ from the expectations k and v. For
instance, a player might, on occasion, gain some direct private benefit from a con-
tribution, so that k̃ < 0. To capture this notion, suppose that k̃ and ṽ are drawn
from a bivariate normal distribution with var[k̃] = σ2ξ2k and var[ṽ] = σ2ξ2v , and
cov[k̃, ṽ] = σ2ψξkξv . The game is equivalent to the pure coordination game de-
scribed in Section 2, where[
ã

d̃

]
=

[
ṽ − k̃

k̃

]
∼ N

([
v − k

k

]
, σ2 ×

[
ξ2v + ξ2k − 2ψξvξk ψξkξv − ξ2k

ψξkξv − ξ2k ξ2k

])
.

It is now straightforward to calculate κ(1) and κ(0):

κ(1) =
v − k√

ξ2v + ξ2k − 2ψξvξk
and κ(0) =

k

ξk

Suppose, for instance, that the process begins in a state in which no individual is
contributing. A revising player will contribute only if k̃ ≤ 0, which happens with
probability 1−Φ(κ(0)/σ). Thusκ(0) indexes the difficulty of obtaining a voluntary
contribution. It depends on the average contribution cost k and, more interestingly,
the variability of this cost ξk. Similarly, in a state in which everyone contributes
a revising player will stop contributing only when ṽ < k̃. This happens with
probability 1−Φ(κ(1)/σ). Thus κ(1) indexes the robustness of the “all contribute”
state. Notice that κ(1) depends on the correlation between ṽ and k̃ as well as the
variances. For instance, when ψ < 0, k̃ and ṽ are negatively correlated. This means
that a revising player who finds it costly to contribute will also place little value on
the public good. This increases the probability that a player will choose to cease
contributing.

Combining these observations, Proposition 1 may be used to select an equi-
librium in the long run. To escape from the state in which everyone contributes a
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proportion 1 − x∗ of the population must stop contributing. From the discussion
above, each such step has a “difficulty” of κ(1)2. Similarly, to escape from the state
in which nobody contributes, a proportion x∗ of the population must begin con-
tributing. Since each such contribution has a “difficulty” of κ(0)2, the equilibrium
(C,C) will be selected if and only if (1−x∗)κ(1)2 > x∗κ(0)2, where integer issues
have been ignored. This reduces to(

v − k

k

)3

> 1 +
ξ2v
ξ2k

− 2ψ
ξv
ξk

This selection condition is illustrated in Figure 4. When the cost-to-benefit ratio
k/v is sufficiently small, the (C,C) equilibrium is selected. The required ratio for
this to happen is increasing in ψ. This is because, for larger ψ, costs and benefits
are positively correlated, and hence there is less chance of observing an individual
with a high cost and low benefit. The effect of ξ2v/ξ

2
k is ambiguous. Although high

valuation variance tends to destabilise the (C,C) equilibrium for moderate values
of ψ, this is not the case when ψ is large. For ψ close to 1, an increase in ξ2v helps
to exploit the positive correlation between value and cost.

4 Analysis with incomplete sampling

4.1 The reasoning process with incomplete sampling

With incomplete sampling, players may observe different strategy frequencies from
the population. All agents obtain samples of size s. Hence there are s+ 1 possible
observations. Index these by i ∈ S = {0, 1, ..., s}, where the generic element i is
the number of individuals seen to be playing strategy 1. An agent’s strategy is a
mapping from their payoffs and sample to an action in the set {1, 2}.

Given their beliefs about an opponent’s play, agents are restricted to consider
only best responses. In Section 3.1 the optimal response of an agent who believes an
opponent plays strategy 1 with probability x was shown to entail playing strategy
1 with probability ρ (x, σ). Since payoffs are independently distributed, beliefs are
allowed to depend only on the sample observed.18 ρ (x, σ) is the probability with
which strategy 1 is a best response. All that remains is to specify the beliefs of the
agents contingent on the sample they observe.

Represent a player’s beliefs as a vector γ ∈ [0, 1]s+1, where the ith element,
γi ∈ [0, 1], is the probability with which an opponent is believed to play strategy 1
given the player has observed i out of s individuals playing strategy 1. This forms
the state variable for the reasoning process. Therefore, given a belief vector, a player
observing a sample of i ∈ S will play strategy 1 with probability ρ (γi, σ). γ is
determined by the sophisticated play paradigm: Players anticipate best responses
in the population and construct their belief profiles iteratively.

Definition 4. qij is the probability of an opponent observing a sample of j ∈ S
given the agent has observed a sample of i ∈ S.

18 Beliefs are not contingent on a players’ identity; agents only have an “identity” in as far as they
have idiosyncratic payoffs and samples.
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qij is determined by the type of sampling procedure the agents use and their prior
beliefs over the population states.19 Two important examples of sampling procedure
are considered in Section 4.3; uniform sampling with and without replacement. Of
course, there are other possible procedures and for this reason the specification of
qij is left open at this stage. The following Lemma is immediate.

Lemma 8. If agents initially hold belief γ, then after one iteration of best response
they will hold updated belief γ̃, where:

γ̃i =
s∑

j=0

qijρ (γj , σ)

Assembling into vector notation, define ρ (γ, σ) ∈ [0, 1]s+1 as the vector with
ith element ρ (γi, σ) and Q as the matrix with (i, j)th element qij .

Definition 5. The iterative reasoning mapping is γ̃ : [0, 1]s+1 �−→ [0, 1]s+1,
where:

γ̃ (γ) = Qρ (γ, σ)

The iterative reasoning mapping extends the best response process of Section
3.2. The difference is that play may be contingent on an agent’s observation, and
because of this players take into account the fact that others may have observed
samples at odds with their own. “Sophisticated play” suggests that (i) the process
should be iterated until it converges and (ii) the starting point for the process should
be determined by the observations. Formally:

Definition 6. The sophisticated reasoning process {γt} is constructed with γt+1 =
γ̃ (γt), where the starting point, γ0, satisfies:

γ0
i = ρ

(
i

s
, σ

)
Summarising, the idea is this: Agent A observes i players out of their sample of

s playing strategy 1. They know that a prospective opponent (agent B) may have
observed a different number of strategy 1 players, say j, with probability qij . With
this in mind, A calculates the probability that B will play strategy 1, ρ(j/s, σ).
Thus, summing over all possible j, the total probability that B will play strategy 1
givenA’s observation of i is

∑
qijρ(j/s, σ). B can also calculate this updated belief

and hence the probability that A will play strategy 1 as a result of an observation
of i. B can then calculate a best response to their own observation, again using
the probabilities in Q, and these updated probabilities of A playing strategy 1. The
process continues in this manner until convergence.

19 Inevitably the prior is important insofar as it affects qij . Extreme beliefs are ruled out in the
following, all population states are at least possible in the prior – a Beta distribution is assumed later
for concreteness. A full discussion of priors is beyond the scope of the current work.
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4.2 Equilibrium selection with incomplete sampling

The limiting behaviour of the sophisticated reasoning process determines the equi-
librium to be played. The main proposition in this section gives sufficient conditions
on the sampling procedure (and hence Q) for selection of the risk-dominant equi-
librium.

If the sophisticated reasoning process converges, so that limt→∞ γt = γ∗,
then the agents play a particular Bayesian Nash equilibrium of the trembled stage
game with sampling. In such an equilibrium, an updating agent plays strategy 1
with probability

∑s
i=0 Pr [i | z] γ∗

i , where Pr [i | z] is the probability of observing
a sample i ∈ S given the population state z ∈ Z. Hence the appropriate Markov
transition probabilities can be constructed. Notice, however, that if γ∗

i = γ∗
j for all

i �= j, then the updating agents play the same Bayesian Nash equilibrium regardless
of their samples, or indeed the population state itself. Hence conditions are sought
under which this may occur.

Since interest lies in the case of vanishing idiosyncrasy, the analysis below
centres upon σ = 0. With incomplete sampling, equilibrium selection in this sense
does not require an examination of the perturbed stage game. The sophisticated
reasoning process itself is enough to select a unique equilibrium.

Condition 1. When a player observes i < 	sx∗
 their belief that an opponent has
observed j > i must be greater than x∗. That is:

x∗ < min
i<�sx∗�


s∑

j=i+1

qij

 (5)

This is the substantive condition that is used in Proposition 2. The right hand
side of Equation (5) is a measure of how “dispersed” the Q matrix is. This in
turn reflects the agents’ beliefs about opponents’ observations given their own. The
interpretation of Condition 4.2 is as follows. Take a player whose sample contains
a minority playing strategy 1. Such a player must place a probability in excess of
x∗ on the event that an opponent’s sample contains a larger number of strategy 1
players.

This condition is particularly weak. To see this, consider the relative probabil-
ities of an opponent receiving a sample containing strictly more strategy 1 players
to a sample containing strictly fewer strategy 1 players. Abusing notation slightly,
this is the odds ratio Pr[j > i | i]/Pr[j < i | i]. When i < 1/2, which is certainly
true when i < x∗, then for reasonable priors and sampling procedures this ratio
will exceed one. In other words, a player who sees only a few strategy 1 players
will find it more likely that an opponent will see more than less. As long as the
probability of an opponent observing exactly the same number of strategy 1 play-
ers (i.e. Pr[j = i | i]) is small (this will occur for sufficiently large sample sizes)
then Condition 4.2 will hold. In summary: Players must believe that it is relatively
more likely that opponents have observed samples that are less extreme than their
own.20

20 With a uniform prior, and a binomial sampling procedure, Condition 1 implies Condition 2, and
Condition 1 holds for any x∗ < 1

2 so long as the sample size is sufficiently large. See Appendix B.



Sophisticated play by idiosyncratic agents 337

A second technical condition is also employed in the proof of Proposition 2:

Condition 2. The sampling procedure must satisfy a minimal first order stochastic
dominance property, or more weakly:

x∗ < min
i≥�sx∗�


s∑

j=�sx∗�
qij

 (6)

Proposition 2. If Conditions 1 and 2 hold then for all i ∈ S, limt→∞ γt
i = 1.

Proof. A best response to a belief of γi ≥ x∗ is to play strategy 1. So, write
ρ (x, 0) = I (x ≥ x∗) where I is an indicator function. The proof proceeds by
showing that γt

i ≥ x∗ for j ≥ 	sx∗
 − t and t ≤ 	sx∗
. Recall that γ0
i = ρ

(
i
s , 0
)
,

then γ0
i = 1 for i ≥ 	sx∗
. Hence the hypothesis holds for t = 0, yielding an

induction basis. Now suppose that the hypothesis holds for some τ < 	sx∗
, so
that γτ

i ≥ x∗ for i ≥ 	sx∗
 − τ . Notice that:

γτ+1
i =

s∑
j=0

qijρ
(
γτ

j , 0
)

=
s∑

j=0

qijI
(
γτ

j ≥ x∗) ≥
s∑

j=�sx∗�−τ

qij

First consider 	sx∗
 − τ − 1 ≤ i < 	sx∗
. Then:

γτ+1
i ≥

s∑
j=�sx∗�−τ

qij ≥
s∑

j=i+1

qij ≥ min
i<�sx∗�


s∑

j=i+1

qij

 > x∗

Where the last inequality holds by Condition 1’s Equation (5). For i ≥ 	sx∗
:

γτ+1
i ≥

s∑
j=�sx∗�−τ

qij ≥
s∑

j=�sx∗�
qij ≥ min

i≥�sx∗�


s∑

j=�sx∗�
qij

 > x∗

By Equation (6) in Condition 2. Thus, γτ+1
i > x∗ for i ≥ 	sx∗
 − τ − 1. By the

principle of induction γt
i ≥ x∗ for i ≥ 	sx∗
 − t and t ≤ 	sx∗
. In particular, this

holds for t̂ = 	sx∗
. So γ�sx∗�
i ≥ x∗. But then, for all t > t̂, γt

i = 1 for all i. Thus,
limt→∞ γt

i = 1 for all i ∈ S. ��
The proof employs an infection argument analogous to that in Morris, Rob, and

Shin (1995). This point is returned to later. Two important remarks follow:

Remark 1. If strategy 1 is sufficiently risk-dominant then all agents will play strat-
egy 1 regardless of the samples they observe.

In other words, for (almost) any sampling procedure, there is always anx∗ small
enough such that the Conditions 1 and 2 hold and hence Proposition 2 applies.
With sufficiently incomplete sampling there is no need to rely upon evolutionary
game theoretic arguments. Equilibrium selection is obtained without recourse to
limiting results and the introduction of “mutations” is unnecessary. Fixing σ = 0,
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the sophisticated thought process alone allows agents to reason their way to the
risk-dominant equilibrium. Convergence takes place instantaneously. Of course,
for reasonable assumptions on the sampling procedure the conditions can hold for
any x∗ < 1

2 , as will be shown in the next section.

Remark 2. 	sx∗
 is an upper bound on the number of levels of reasoning required
to converge to the equilibrium.

As mentioned earlier (see Sect. 2), psychological research has focused on the
number of iterations humans are capable of – and it is not many. Here, there is
no need to assume the mathematical nicety of infinite reasoning capacity. In the
incomplete sampling case equilibrium is reached in finite time.21

Conditions 1 and 2 determine precisely how incomplete sampling needs to be
for any particular game and prior. Agents must place sufficiently high weight on
the possibility that others have observed quite different samples from themselves.
Given that they observe a sample of i < 	sx∗
 agents playing the risk-dominant
strategy, they must believe it more than likely that another agent has observed
j > i.22 Since this is true for all players, they can infer that each agent will believe
it more than likely that the others have observed a k > j, and so on. Through this
consideration of the deliberations of others, agents will eventually reach a point
at which they consider it sufficiently likely that their prospective opponent will
play the risk-dominant strategy to make their optimal response the same (with high
probability). Once this point is reached both players begin (through the iterative
thought process) to believe it more and more likely that their opponent will play
the risk-dominant strategy. Condition 2 guarantees this. Eventually (and in finite
iterations), all players optimally play the risk-dominant strategy with probability
1, see Figure 5.23

Notice that initial observations are ignored. As soon as the iterative procedure
begins, an infection process much like that of Morris, Rob, and Shin (1995) takes
the posteriors to the belief that the prospective opponent observed all risk-dominant
players. Proposition 2 employs this infection argument formally.

4.3 Sampling procedures

If Conditions 1 and 2 are satisfied then all players adopt the same strategy. Note that
no evolutionary considerations are needed – reasoning alone enables selection. A
sufficiently risk-dominant strategy will be selected by the sophisticated reasoning
process. More formally, fix a sampling procedure and associated matrix Q, then

21 This time could be a very short period indeed. �sx∗� can be very small with reasonable sample
sizes, and in any case it is a rather loose upper bound.

22 In the sense of Condition 1.
23 In this diagram σ > 0 for illustrative purposes (the equilibrium does not involve a probability 1

belief that the opponent will play strategy 1). However, this does demonstrate that the results will go
through in general when there are “mutations”, although this case is of less interest. If σ is sufficiently
small it is straightforward that the conclusions hold. For σ sufficiently large recall there is only one
Bayesian Nash equilibrium, and hence selection is of no importance.
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Fig. 5. Effects of sampling s = 10

for x∗ sufficiently small, strategy 1 will be selected. A related question is raised
here: Fixing x∗, what properties of the sampling procedure are required to result in
the selection of the risk-dominant equilibrium? Conditions 1 and 2 are sufficient.
Here the focus is on whether two reasonable sampling procedures (with/without
replacement) satisfy these requirements.

First, suppose that agents observe a sample of size s, with replacement. The
probability of observing an agent playing strategy 1 is z/n = p.24 Therefore the
number of agents playing strategy 1 in an individuals sample is distributed bino-
mially with parameters p and s. The probability they observe exactly i strategy 1
players is:

Pr [i | p] =
(
i

s

)
pi (1 − p)s−i

Agents have priors over the state p (or z) , g (p), with distribution function G (p).
So:

Pr [i] =
∫

p

Pr [i | p] dG (p)

Calculating the elements of Q, the qij are given by:

qij =
Pr [i ∩ j]

Pr [i]
=

∫
p
Pr [i | p] Pr [j | p] dG (p)∫

p
Pr [i | p] dG (p)

For concreteness assume the prior is Beta distributed with parameters β1 and β2:25

g (p) =
Γ (β1 + β2)
Γ (β1)Γ (β2)

pβ1−1 (1 − p)β2−1

The Beta is technically convenient as well as simplifying nicely to a symmetric
prior (β1 = β2) and, as a special case, the uniform (β1 = β2 = 1). A closed form
can easily be obtained for the elements of the Q matrix – see Appendix B for the
proof.

24 p will be the standard notation throughout this section, simply for convenience.
25 The Beta is a continuous distribution and hence n needs to be large enough for this to be a reasonable

approximation. This is assumed throughout, although it is stated in Proposition 3.
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Proposition 3. With a Beta prior (and n sufficiently large) the elements of Q are:

qij =
Γ (s+ 1)

Γ (j + 1)Γ (s− j + 1)
Γ (β1 + β2 + s)

Γ (β1 + i)Γ (β2 + s− i)

× Γ (β1 + i+ j)Γ (β2 + 2s− i− j)
Γ (β1 + β2 + 2s)

Therefore, with the uniform distribution the elements reduce to:

qij =
s+ 1
2s+ 1

(
s

i

)(
s

j

)/( 2s
i+ j

)
(7)

Using this formulation Appendix B reports the results of numerical calculations
to find (for a range of sample sizes, s) a lower bound on the maximum value of
x∗ for which Conditions 1 and 2 hold. This lower bound rapidly approaches 1/2
as s increases. As x∗ is increased a higher sample size s is required to satisfy the
conditions. For a given x∗, the larger the sample size the more likely the risk-
dominant equilibrium is selected immediately. This, combined with Appendix B,
demonstrates that sampling with replacement is one procedure that can satisfy the
conditions of Section 4.2.

An alternative to the procedure is the more intuitive case of sampling without
replacement. This is the scenario Young (1993a) investigates. Players observe a
random sample of size s consisting of different individuals’ strategy choices. In a
population of size n there are z agents playing strategy 1. The number of strategy 1
observations a player makes is hypergeometrically distributed with parameters z,
n and s. The probability of observing exactly i agents playing strategy 1 is:

Pr [i | z] =
(
z

i

)(
n− z

s− i

)/(n
s

)
Retaining the assumptions above concerning the prior once again yields qij . Hy-
pergeometric probabilities are well approximated by Binomial probabilities for
sufficiently large n/s. Hence, by Proposition 3 and the numerical results of Ap-
pendix B, with n, n/s and s sufficiently large Conditions 1 and 2 are satisfied for a
given x∗ < 1/2. n/s is the only additional concern for sampling without replace-
ment. The condition that this ratio be large is reminiscent ofYoung (1993a). Sample
and population sizes must be large, but the number of individuals in the population
must still dwarf the number observed.

5 Concluding remarks

Focal points often provide a way to select between strict equilibria. However, they
can be arbitrary and game specific. The focal point here is provided by history –
the context in which the game is played. Players do not imitate history or play a
naı̈ve best response. Rather they make an initial conjecture – that their opponent
will play a best response – and consider what to do in such an event. Nor does
their deliberative process stop there, they continue to make iterative conjectures
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in a “sophisticated” manner. This procedure leads them to an action which then
becomes part of history and history evolves.

With such a framework in mind, the conclusions unsurprisingly rest upon the
completeness of information available to agents. When each individual observes the
entire population in their sample, an exact equilibrium selection criterion is found.
Using the sophisticated play paradigm expounded above, agents reason their way
to Bayesian Nash equilibria. In the classic coordination game, which equilibrium
strategy is played depends on their initial observation of history.As the idiosyncratic
nature of the population is reduced to zero, Bayesian equilibria become Nash and
selection takes place. If a strategy is both risk-dominant and remains so when the
payoffs are normalised by their variances then it is selected.

Agents are more likely to obtain only incomplete information concerning their
environment. A complete characterisation is not available in such a scenario. Nev-
ertheless, much can be deduced. There is no need for the introduction of artificial
“mutations” to enable selection. In fact, with sufficiently incomplete sampling –
and hence only partial information – the risk-dominant equilibrium is selected im-
mediately. Players ignore history altogether in an effort to coordinate with their
opponents. Two conditions on the game and sampling procedure suffice to ensure
this result. For two common sampling procedures with reasonable constraints on
the population and sample sizes, these conditions hold. Further, if a strategy is
sufficiently risk-dominant it is selected. Finally, it only takes an agent a finite (and
small) number of iterations of the form “I believe that you believe that I believe...”
to find it optimal to play the risk-dominant strategy. Moreover, thought processes
of this type are all that is required for selection to take place – mutations, evolution,
and observations of history are rendered irrelevant.

Appendix A. Extension to logistic noise

The analysis in the main paper easily extends to the case of logistic noise. Suppose,
for instance, that εa/ξa and εd/ξd are independent and that

Pr
[
εi

ξi
≤ x

]
=

1
1 + e−x

⇒ var[ã] =
σ2ξ2aπ

2

3
and var[d̃] =

σ2ξ2dπ
2

3
.

Suppose that the entire population is currently playing strategy 1, and hence x = 1.
The probability that a best-response is strategy 2 is given by

Pr[a+ σεa ≤ 0] = Pr
[
εa

ξa
≤ − a

σξa

]
= e−a/σξa × ea/σξa

1 + ea/σξa
.

Thus, as σ → 0, this probability behaves as e−a/σξa . Similarly, when x = 0,
the probability that a best-response is strategy 1 is approximately e−d/σξd . It is
straightforward to check that appropriate variants of Lemmas 1–7 continue to hold.
Modifying the definition of κ such that

κ(0)2 =
d

ξd
and κ(1)2 =

a

ξa
,

Proposition 1 and Corollaries 1–2 continue to apply.
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6 Appendix B. Omitted proofs and numerical calculations

Section B.1 and B.2 provide the proofs of Lemma 2 and Proposition 3 respectively.
Section B.3 contains the numerical calculations referred to throughout Section 4.3.

B.1 Proof of Lemma 2

Fixed points of ρ (x, σ) correspond to roots of:

f (x) = Φ

(
κ (x)
σ

)
− x

Notice that f ′ (x) = φ (κ (x) /σ)κ′ (x) /σ − 1. When σ → 0, f (x) → 1 − x if
x > x∗, and f (x) → −x if x < x∗, so there cannot be a fixed point unless it is
local to {0, x∗, 1}. Consider the interval 0 ≤ x ≤ ε. For sufficiently small σ, f (x)
is decreasing in this interval. Moreover, f (0) ≥ 0 and f (ε) < 0. Therefore there
is exactly one root in this interval. It is immediate that the fixed point converges
to 0 in the limit. A similar argument applies to 1 − ε ≤ x ≤ 1. Now consider
x∗ − ε ≤ x ≤ x∗ + ε. Then f (x∗ − ε) < 0 and f (x∗ + ε) > 0. Again there is
at least one root in this interval. Φ (κ (x) /σ) is strictly increasing. A fixed point of
Φ (κ (x) /σ) corresponds to a fixed point of its inverse. Local to x∗ the derivative
of the inverse is less than one. This locality expands as σ gets small. Within this
region there can be only one fixed point of the inverse and hence in this interval the
root of f (x) is unique. Convergence for σ → 0 is again immediate.

B.2 Proof of Proposition 3

Allowing n sufficiently large for the prior to be well approximated by a Beta dis-
tribution, note that:

Pr (p | i) =
g (p) Pr (i | p)∫ 1

0 Pr (i | x) g (x) dx
∝ g (p) Pr (i | p)

∝ pβ1−1 (1 − p)β2−1
pi (1 − p)s−i

∝ pβ1+i−1 (1 − p)β2+s−i−1

Which is Beta with parameters β1 + i and β2 + s− i. The multiplicative factor to
ensure this probability integrates to one can be inserted to give an exact form for
Pr (p | i). So:

Pr (p | i) =
Γ (β1 + β2 + s)

Γ (β1 + i)Γ (β2 + s− i)
pβ1+i−1 (1 − p)β2+s−i−1
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Now the elements of Q are:

qij = Pr (j | i) =
∫ 1

0
Pr (j | p) Pr (p | i) dp

=
s!

j! (s− j)!
Γ (β1+β2+s)

Γ (β1+i)Γ (β2+s− i)

∫ 1

0
pβ1+i+j−1 (1 − p)β2+2s−i−j−1

dp

=
s!

j! (s− j)!
Γ (β1 + β2 + s)

Γ (β1 + i)Γ (β2 + s− i)
Γ (β1 + i+ j)Γ (β2 + 2s− i− j)

Γ (β1 + β2 + 2s)

×
∫ 1

0

Γ (β1 + β2 + 2s)
Γ (β1 + i+ j)Γ (β2 + 2s− i− j)

pβ1+i+j−1 (1 − p)β2+2s−i−j−1
dp

The second term in the last line is a Beta distribution with parameters β1 + i + j
and β2 + 2s− i− j which integrates to one. Hence, as required:

qij =
Γ (s+ 1)

Γ (j + 1)Γ (s− j + 1)

× Γ (β1 + β2 + s)
Γ (β1 + i)Γ (β2 + s− i)

Γ (β1 + i+ j)Γ (β2 + 2s− i− j)
Γ (β1 + β2 + 2s)

B.3 Numerical calculations

Setting β1 = β2 = 1 yields a uniformly distributed prior. Then qij simplifies to
the expression in Equation (7). Condition 1 provides a lower bound for maximum
values of x∗ for which it is satisfied. Since x∗ < 1/2:

min
i<�sx∗�


s∑

j=i+1

qij

 ≥ min
i<�s/2�


s∑

j=i+1

qij


The second expression can be numerically calculated for a range of s, using Equa-
tion (7). If x∗ is less than this value, Condition 1 is satisfied. Figure 6 illustrates
these lower bounds. Finally, Condition 1 implies Condition 2 for such qij as shown
in the following:

Lemma 9. If j > i then qij < qi+1j and if j ≤ i then qij ≥ qi+1j , where:

qij =
s+ 1
2s+ 1

(
s

i

)(
s

j

)/( 2s
i+ j

)
Proof. Consider the ratio qij/qi+1j :

qij
qi+1j

=
s+ 1
2s+ 1

(
s

i

)(
s

j

)(
2s

i+ 1 + j

)/ s+ 1
2s+ 1

(
2s
i+ j

)(
s

i+ 1

)(
s

j

)
Expanding the terms of this fraction leaves:

qij
qi+1j

=
(2s− i− j)! (i+ j)! (s− i− 1)! (i+ 1)!
(s− i)!i! (2s− i− 1 − j)! (i+ 1 + j)!

=
(i+ 1) (s− i) + (i+ 1) (s− j)

(i+ 1) (s− i) + j (s− i)
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Fig. 6. Lower Bounds on the maximum value of x∗ for Condition 1 to hold

If j > i then (since i and j are integers and lie in [0, s]) s (j − i) > s − j and
hence j (s− i) > (i+ 1) (s− j), so qij/qi+1j < 1 and the result holds. Likewise
for j ≤ i. ��

Lemma 10. Condition 1 implies Condition 2 for such qij .

Proof. Consider the bound in Condition 2:

min
i≥�sx∗�


s∑

j=�sx∗�
qij

= min
i≥�sx∗�

1−
�sx∗�−1∑

j=0

qij

=1− max
i≥�sx∗�


�sx∗�−1∑

j=0

qij


Notice that in the last term j < i throughout the sum. Bringing the results of Lemma
9 to bear, qij ≥ qi+1j for all such j < i. Hence, the maximum takes place at the
minimum i available, i.e. i = 	sx∗
. So, the equality becomes:

min
i≥�sx∗�


s∑

j=�sx∗�
qij

 = 1 −


�sx∗�−1∑
j=0

q�sx∗�j

 =
s∑

j=�sx∗�
q�sx∗�j

But if Condition 1 holds then:

x∗ < min
i<�sx∗�


s∑

j=i+1

qij

 ≤
s∑

j=�sx∗�
q�sx∗�−1j <

s∑
j=�sx∗�

q�sx∗�j

Where the first inequality follows simply because the minimum is being taken over
all values of i < 	sx∗
, which includes i = 	sx∗
 − 1. The second inequality
again follows from Lemma 9. i = 	sx∗
 − 1 < j and hence qij < qi+1j . That
is, q�sx∗�−1j < q�sx∗�j for all such j. The bound in Condition 2 is met once
Condition 1 is satisfied. ��

Figure 6 therefore illustrates lower bounds on the maximum value of x∗ for
both Conditions to hold. From the numerical calculations, any value of x∗ < 1/2
can satisfy the Conditions given a large enough s. Even for relatively small sample
sizes, x∗ can be very close to 1/2.
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