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Abstract

A public good is produced if and only if a volunteer provides it. There are many pure-strategy Nash equi-
libria in each of which a single player volunteers. Noisy strategy revisions (for instance, quantal responses)
allow play to evolve. Equilibrium selection is achieved via the characterisation of long-run play as revi-
sions approximate best replies. The volunteer need not be the lowest-cost player: relatively high-cost, but
nonetheless “reliable” players may instead produce the public good. More efficient players provide when
higher values are associated with lower costs. Voluntary open-source software provision offers a contem-
porary application.
© 2007 Elsevier Inc. All rights reserved.
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1. The volunteer’s dilemma

A public good is produced if and only if at least one player volunteers to provide it. There
are many pure-strategy Nash equilibria involving voluntary provision by a single player. An
equilibrium-selection problem arises: who will volunteer?

Studies of the symmetric version of this familiar game (Diekmann, 1985) have often focused
on the symmetric mixed-strategy equilibrium and its Bayesian–Nash counterpart for incomplete-
information games (Weesie, 1994; Johnson, 2002). Such mixed equilibria have counter-intuitive
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and counter-evidential properties. An (even slightly) asymmetric volunteer’s dilemma exempli-
fies: players with low provision costs volunteer with low probability in order to maintain others’
indifference.1 This is somewhat absurd.

This paper selects a pure-strategy equilibrium via the study of evolving play: strategies are
periodically revised by players who usually choose myopic best replies to the current state of
play, but occasionally “mutate” against the flow of play (Kandori et al., 1993; Young, 1993). If
a revising player chooses to volunteer even when another has already, the process experiences a
low probability “birth.” Similarly, if a revising player chooses not to volunteer when there is no
other provider, then the process experiences a “death.”

Any failures to play best replies can be interpreted as equiprobable mistakes. Here, however,
a state-dependent specification, which encompasses quantal-response strategy revisions, ensures
that the probability of a birth or a death can respond to payoffs.2 For instance, if a player’s cost of
volunteering is low then any idiosyncratic benefit from the act of volunteering may overwhelm
it; a birth is more likely. Similarly, a volunteer is less likely to die when the public good is highly
prized. Birth and death probabilities also depend upon the relative noise in a player’s revisions.
Under the usual random-utility interpretation, a player with particularly variable payoffs will fail
to play a best reply with relatively high probability.

Proposition 1 characterises long-run play when strategy revisions approximate myopic best
replies. The player who volunteers in the equilibrium thus selected need not experience the low-
est cost. Rather, a combination of enthusiasm (relatively high birth probability) and reliability
(relatively low death probability) determines who will provide the public good. Proposition 2
reveals that when enthusiasm and reliability are more positively associated looking across the set
of players, then the cost paid in the selected equilibrium is lower.

2. The evolution of voluntary action

In a simultaneous-move n-player binary-action game, player i selects zi ∈ {0,1}, where zi = 1
represents “volunteering.” Looking forward to the strategy-revision process described below, the
pure-strategy profile z is described as a “state of play” in the state space Z ≡ {0,1}n.

In a volunteer’s dilemma, a public good is provided if and only if at least one player undertakes
the costly burden of producing it. Therefore, a player has an incentive to volunteer if and only if
no other player does so. This game emerges from the payoff specification

ui(z) = vi × I
[

n∑
i=1

zi � 1

]
− zici, (1)

1 This is a common feature of related games including the textbook game of chicken (n = 2 here) or the classic war
of attrition (Bliss and Nalebuff, 1984; Gradstein, 1992; Gradstein, 1994) in which provision is delayed until a player
volunteers. In a global-game (Carlsson and van Damme, 1993) version of the asymmetric chicken game there is a unique
equilibrium that approximates one of the (asymmetric) pure-strategy Nash equilibria. Similarly, under a wide variety of
equilibrium-selection devices, asymmetric wars of attrition instantly end with the concession of one player (Kornhauser
et al., 1989; Riley, 1999; Myatt, 2003).

2 Quantal responses (McKelvey and Palfrey, 1995) were exploited by Blume (1995, 1997, 2003) and Blume and
Durlauf (2001), who studied logit-driven evolution (one of the specifications considered here).
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where I[·] is the indicator function and where vi > ci > 0 for all i. Thus player i’s private
valuation for the public good is vi , and the private cost of volunteering is ci .3 The pure-strategy
Nash equilibria are the subset Z1 ⊂ Z of n states in which a single player provides.

Attention turns to evolving play. At each time t the state of play zt ∈ Z is updated via a
one-step-at-a-time strategy-revision process: a player i is randomly selected and responds to the
current play of others. This generates a Markov chain on Z. The transitions involve single steps
up and down in the state space. A step up is the “birth” of a new volunteer, and is a (myopic)
best reply by the revising player if zt+1 ∈ Z1; that is, whenever there are no other volunteers.
Otherwise, a birth is against the flow of play. Similarly, a step down is the “death” of an existing
volunteer; this is against the flow of play when zt ∈ Z1.

If strategy revisions were myopic best replies then the process would lock in to pure-strategy
equilibria. Here, however, revisions are occasionally against the flow of play: player i volunteers
with some birth probability bε

i > 0 even when other providers exist; similarly, player i ceases to
be the lone volunteer (or fails to volunteer when no other player is doing so) with some death
probability dε

i > 0. Such “mutations” allow play to escape from Nash equilibria and move around
the state space. The strategy-revision process is an ergodic Markov chain, and a unique stationary
distribution reveals how often each state is played in the long run.

The birth and death probabilities are indexed by a noise parameter ε > 0, and satisfy bε
i → 0

and dε
i → 0 as ε → 0. Thus, for small ε, strategy revisions approximate best replies, and most

time is spent in the Nash-equilibrium states. A standard approach (Foster and Young, 1990;
Kandori et al., 1993; Young, 1993) is to examine the limit of the ergodic distribution as ε → 0,
when it places all weight on a “stochastically stable” subset of states; when this subset is a single
pure-strategy equilibrium then that equilibrium is “selected.”

One possibility is bε
i = dε

i = ε, so that ε is a state-independent error probability. This approach
is not fruitful here, since evolution treats the players symmetrically; each member of Z1 attracts
probability 1/n as ε → 0.4 Instead, these birth and death probabilities differ from each other and
across players, and are “state dependent” in the sense of Bergin and Lipman (1996): they decline
at different rates as noise is reduced. This means that the ratio of any two distinct birth or death
probabilities either explodes or vanishes as ε → 0.

Some formal notation is useful here. For two functions f (ε) > 0 and g(ε) > 0, write

f (ε) � g(ε) ⇔ lim
ε→0

f (ε)

g(ε)
= ∞ and f (ε) 
 g(ε) ⇔ lim

ε→0

f (ε)

g(ε)
= K > 0. (2)

When f (ε) and g(ε) both vanish as ε → 0, then they decline at the same rate if f (ε) 
 g(ε), and
g(ε) vanishes more quickly if f (ε) � g(ε). f (ε) � g(ε) if f (ε) � g(ε) or f (ε) 
 g(ε).

It is assumed that either bε
i � bε

j or bε
i ≺ bε

j for all i 
= j . Given that this is so, it is without
loss of generality to label players so that bε

1 � · · · � bε
n. This means that bε

1 > · · · > bε
n for all ε

small enough: player 1 experiences the highest birth probability and is the most enthusiastic;
the remaining players are ordered by declining enthusiasm. Turning to deaths, it is assumed that
dε
i � dε

j or dε
i ≺ dε

j for all i 
= j . A player with a relatively low death probability is relatively

3 The important feature is the game’s best-reply structure. It is straightforward to restate the results for games with the
same best-reply structure: for example, if costs are shared between multiple volunteers.

4 This is also true when a state-independent process is applied to a “stag-hunt” coordination game: with two players
it takes exactly one mutation to flip between the two pure-strategy equilibria. Kandori et al. (1993) circumvented this
by allowing members of an n-strong population to match randomly and subsequently play a symmetric 2 × 2 game.
In effect, the population members are players engaged in an n-player binary-action game. It then takes more than one
mutation to move between equilibria.
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unlikely to quit; such a player is reliable. Player r satisfying dε
r ≺ dε

i for all i 
= r is the most
reliable player. No direct association between enthusiasm and reliability is imposed. However, it
is assumed that either bε

i � dε
j or bε

i ≺ dε
j for all i and j .5

3. Strategy revisions as quantal responses

The model of state-dependent mutations considered here arises naturally when revising play-
ers choose quantal responses in the sense popularised by McKelvey and Palfrey (1995). For
instance, the choice of a revising player arises from a logit quantal response when

log

[
1 − bε

i

bε
i

]
= ci

ε
and log

[
1 − dε

i

dε
i

]
= vi − ci

ε
. (3)

Logit responses approximate best replies when ε → 0. The rates at which bε
i and dε

i vanish
depend on the payoffs; for instance, bε

i � bε
j if and only if ci < cj . Hence, ordering players by

decreasing enthusiasm is equivalent to ordering them by efficiency: c1 < · · · < cn, so that the
most enthusiastic player experiences the lowest cost of provision. Similarly, player i is more
reliable than player j (so that dε

i ≺ dε
j ) if and only if vi − ci > vj − cj . Clearly, if all players

value the public good in the same way, then a more enthusiastic player is also more reliable.
However, when valuations differ the most enthusiastic player may be unreliable.

The specification in (3) carries a random-utility interpretation: if the incentive of a player to
volunteer is perturbed by a logistic error, then the logit is obtained. Of course, other random-
utility specifications are available. Suppose, for instance, that the payoffs of a revising player are
perturbed by normal noise, so that c̃i ∼ N(ci, ε

2 × ξ2
i ) and ṽi ∼ N(vi, ε

2 × σ 2
i ). Writing ρi for

the correlation coefficient between c̃i and ṽi , this probit specification yields

bε
i = 1 − Φ

(
ci

ε × ξi

)
and dε

i = 1 − Φ

(
vi − ci

ε ×
√

ξ2
i + σ 2

i − 2ρiξiσi

)
, (4)

where Φ(·) is the cumulative distribution of the standard normal. Note that bε
i � bε

j if and only
if (ci/ξi) < (cj /ξi). The enthusiasm of player i is determined not only by the provision cost but
also by the variance term ξ2

i ; players with particularly variable random utility shocks (high values
of ξ2

i and σ 2
i ) experience high birth and death probabilities.6 Such players are more enthusiastic

and yet less reliable.
Reliability is also influenced by the correlation between players’ costs of provision and valu-

ations for the public good. For instance, holding other parameters constant across the player set,
dε
i ≺ dε

j if and only if ρi > ρj . Reliability is enhanced by positive correlation between cost and
value shocks: any short-term increase in provision cost is tempered by a contemporaneously high
valuation for the public good.

4. Long-run play

When ε is small, play almost always follows the direction of best reply and tends to “lock in”
to pure-strategy Nash equilibria. These n states in Z1 form (singleton) limit sets from which a

5 This is for simplicity only. Admitting the possibility of ties presents no particular technical difficulties for the proofs,
but the statement of the main result in Proposition 1 becomes more involved.

6 The probit is a natural way in which to introduce heteroskedasticity to the population. Of course, it would be equally
legitimate to introduce heteroskedasticity to the logit specification of (3).
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noiseless (pure myopic best reply) strategy-revision process cannot escape. As ε vanishes, how-
ever, only a stochastically stable subset Z† ⊆ Z1 retains weight in the ergodic distribution. This
section characterises the stochastically stable set and identifies the players who, for vanishing
noise and as part of long-run play, volunteer to provide the public good.

This stochastically stable set Z† consists of the states in Z1 that are hardest to leave. For
z ∈ Z1, there are two methods of escape: the active player i satisfying zi = 1 is selected to revise,
dies with probability dε

i , and is replaced; or some other j 
= i is selected to revise, volunteers with
probability bε

j , and so supplants i. For the latter escape route, the most likely replacement is the
most enthusiastic of j 
= i. Hence, for vanishing noise, the probability of leaving z is determined
by max[dε

1 , bε
2] if i = 1 and max[dε

i , bε
1] otherwise. The active volunteers for all possible cases

are identified below; the formal proof is in Appendix A.

Proposition 1. Call player i an activist if and only if limε→0[limt→∞ Pr[zt
i = 1]] > 0. Recall

that player r is the most reliable player; that is dε
r ≺ dε

i for all i 
= r .

(i) If dε
r � bε

1 then the unique activist is player r ,
(ii) if bε

1 � dε
1 then the unique activist is player 1, and

(iii) if dε
1 � bε

1 � dε
r then the activists are all of the players in M ≡ {i: bε

1 � dε
i }.

Write W̄ ε for the expected wait until an activist volunteers. Then W̄ ε � 1/max[bε
1, d

ε
r ].

For case (i), dε
r � bε

1 implies that deaths are always more likely than births. The quickest exit
is always a death, and so the most reliable player is selected to volunteer.

For case (ii), bε
1 � dε

1 implies that player 1 finds it easier to volunteer than to quit. An exit
from an equilibrium state with a volunteer j 
= 1 must be at least as easy as the birth of player 1.
Since bε

1 � max[dε
1 , bε

2], it is harder to escape from the equilibrium in which the most enthusiastic
player is active. Under (homoskedastic) logit or probit specifications, case (ii) entails the efficient
(lowest cost) provision of the public good.

For case (iii), there are equilibrium states from which the easiest exit is via a birth. These
states involve reliable volunteers for whom any unreliability is overwhelmed by the enthusiasm
of player 1. Such states are equally robust for vanishing noise and share positive weight in the
limit; since dε

1 � bε
1, player 1 is too unreliable to participate in the set of activists.

5. Enthusiasm and reliability

One natural configuration is when enthusiasts are reliable: dε
1 ≺ · · · ≺ dε

n . Under logit quantal-
response (3) this happens when valuations are symmetric: vi = v for all i. The activist is the most
enthusiastic player and the most efficient provider. On the other hand, enthusiasts might be unre-
liable: dε

1 � · · · � dε
n . Under random-utility specifications enthusiasm can stem from particularly

high-variance payoff shocks; but high variances can also lessen reliability. A possibly high-cost
but low-variance “plodder” may solve the volunteer’s dilemma, since the relatively low-cost
“star” is too unreliable to contribute consistently.

This discussion suggests that a positive association between enthusiasm and reliability favours
the activism of enthusiasts. Since players are labelled via decreasing birth probability, this rela-
tionship is determined by the order of their death probabilities. To measure formally the degree
to which death probabilities are ordered (and hence assess the enthusiasm-reliability association)
write d ≡ {dε}n for a set of death probabilities, and d̂ ≡ {d̂ε}n for a permutation of this set:
i i=1 i i=1
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for each i, d̂ε
i = dε

j for some j , and vice versa. Write dε
(y) for the yth smallest death probability,

and note that dε
(y) = d̂ε

(y) for all y. Now

Oxy(d) =
x∑

i=1

I
[
dε
i � dε

(y)

]
(5)

is how many of the y most reliable players occupy one of the first x slots on the player list; it
measures how well-ordered the death probabilities are. Equivalently, it is how many of the y most
reliable players are also amongst the x most enthusiastic; this is the association of enthusiasm
and reliability.7 If Oxy(d̂) � Oxy(d) for all x and y then d̂ is an order-improving permutation
of d . Such a permutation “favours the activism of enthusiasts” if for any activist under d the
number of less-enthusiastic activists is weakly reduced under d̂ .

Proposition 2. An increase in the association of enthusiasm and reliability (formally, an order-
improving permutation of death probabilities) favours the activism of enthusiasts.

If low birth costs arise from low values of ci , this result can be interpreted in terms of effi-
ciency: an order-increasing permutation lowers the cost paid in the selected equilibrium.

To illustrate, adopt the logit specification (3) and consider “shifting value” from one player
to another. Suppose that players i and j satisfy ci < cj and vi − ci < vj − cj ; hence i is more
enthusiastic but less reliable than j . Let �v ≡ [vj − vi] − [cj − ci] > 0, and note that �v < vj .
Now move �v utility (shifting value) from j to i so that new valuations are given by v̂i ≡ vi +�v

and v̂j ≡ vj −�v. This pairwise switch of the players’ death probabilities is an order-improving
permutation. By Proposition 2, the activist must be (at least weakly) more enthusiastic hence
experience a weakly lower provision cost. So, if utility is transferable in this way, it is efficiency
enhancing to shift value from high-cost players to low-cost players.

6. Implications

The volunteer’s dilemma is a simple yet important game. The voluntary development of open-
source software provides a contemporary application. Johnson (2002) models this problem as
an incomplete-information volunteer’s dilemma. Rather than address the equilibrium-selection
problem, he instead provided a careful characterisation of the symmetric Bayesian–Nash equilib-
rium in which the probability that the players volunteer is decreasing in the correlation between
their cost and value parameters.

The focus here is on selection between the pure-strategy Nash equilibria. It might be expected
that, owing to asymmetries in payoffs, the activist would be a player with relatively low costs.

7 To measure formally the enthusiasm–reliability association write y for the rank of a player’s reliability and x for the
rank of the player’s enthusiasm. Thus bε

(x)
is the xth highest birth probability, and dε

(y)
is the yth lowest death probability.

The joint distribution of x and y is an empirical copula:

Cxy(b, d) ≡
∑n

i=1
I
[
bε
i � bε

(x)

] × I
[
dε
i � dε

(y)

] =
∑x

i=1
I
[
dε
i � dε

(y)

] = Oxy(d).

The penultimate equality follows because players are ordered via decreasing birth probability. The copula captures any
association between birth and death probabilities. A measure of this association is concordance: (b̂, d̂) is more concordant
than (b, d) if and only if Cxy(b̂, d̂) � Cxy(b, d) for all x and y, which implies an increase in the standard empirical
measures of association, such as Spearman’s ρ and Kendall’s τ .
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However, the result is more subtle: the activist is either the most “enthusiastic” player (case (ii)
in Proposition 1), or the most “reliable” player(s) (cases (i) and (iii) in Proposition 1).

Interpreting strategy revisions as quantal responses, an enthusiast has a relatively low cost
parameter. Enthusiasm is associated with efficiency, and it is socially optimal for the activist
to be the most enthusiastic player. If bε

i � dε
j for all i and j then enthusiasm “overwhelms”

reliability, and this is indeed true; case (ii) applies here. Alternatively, efficiency is attained when
the relatively enthusiastic players are also relatively reliable (Proposition 2).

Negative association between bε
i and dε

i might be understood as negative correlation between
vi and ci “across” the players, and efficiency is enhanced if those who value the good highly
find it cheapest to provide: shifting value to lower-cost players reduces the cost paid in the se-
lected equilibrium. Returning to the open-source software example, networking utilities might
exhibit negative correlation between vi and ci since skilled programmers find them useful. On
the other hand, word processors might exhibit positive correlation since often programmers are
not end users. These observations resonate with the aforementioned comparative static of John-
son (2002), who argued that value–cost correlation provides a resolution to the “puzzle in the
open source community [ . . . ] why some obviously useful software does not get written [ . . . ]
while open source word processors and spreadsheets do exist, it is fair to say that only recently
have they begun to be comparable in quality to, for example, Microsoft Office. On the other hand,
hundreds of other free utilities and applications exist.”

It is interesting to distinguish this effect from correlation “within” payoffs. Consider the spec-
ification in (4): high ρi ceteris paribus implies low dε

i and favours the overwhelming effect
described above (a high draw of ci , which might have led to a death, is likely contemporane-
ous to a counteractively high draw of vi , implying improved reliability). Efficiency is favoured
by negative correlation “across” the panel of players and positive correlation “within.”

Finally, consider “sharing costs” when more than one player volunteers (perhaps, if k players
volunteer, each player pays their cost with probability 1/k). Since this has no effect upon the best-
reply structure of the game, the same analysis applies. The difference is that the cost of player i

contributing when a single other player j already provides the good drops from ci to ci/2. Under
a quantal-response interpretation, this has no impact on the death probabilities, but simply raises
all of the birth probabilities. This provides an alternative source for the overwhelming effect
described above, and thus favours efficiency.

Another interesting alteration that might be made to the game involves requiring the contribu-
tions of many individuals to provide the public good successfully. In this case, the game becomes
a threshold public-good provision game (Palfrey and Rosenthal, 1984) in which m out of n play-
ers must volunteer to provide the good. The best-reply structure is now changed; further analysis
is in a companion paper (Myatt and Wallace, 2006).
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Appendix A

The following notation is employed: (beginning from z) W(z) is the expected wait before leav-
ing z, Q(z, z′) is the probability of escaping from z and reaching z′ before returning to z, N(z, z′)
is the expected number of occurrences of z before z′ is reached, and p(z) ≡ limt→∞ Pr[zt = z].
Then
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N(z′, z) = 1

Q(z′, z)
and so

p(z)

p(z′)
= N(z, z′)

N(z′, z)
= Q(z′, z)N(z, z′) � Q(z′, z)W(z).

(A.6)

The various equalities are from Kemeny and Snell (1960, Ch. 6) and are used in the proof of
Ellison (2000, Lemma 1). The inequality is obvious. All terms are functions of ε, suppressed for
simplicity.

Lemma 1. limε→∞ p(z′) = 0 for all z′ /∈ Z1, and hence limε→0[limt→∞ Pr[zt ∈ Z1]] = 1.

Proof. There are transitions from z′ /∈ Z1 into some z ∈ Z1 with probability bounded away from
zero as ε → 0, and hence Q(z′, z) is bounded away from zero. As ε → 0 the probability of escape
from z vanishes and so W(z) → ∞. Employing (A.6), p(z)/p(z′) → ∞ and so p(z′) → 0. �

For some z ∈ Z1 take i such that zi = 1. Write Wi ≡ W(z) and pi ≡ p(z). Given z′ ∈ Z1
satisfying z′

j = 1 for j 
= i write Qij ≡ Q(z, z′) and Nij ≡ N(z, z′). (A.6) yields (pi/pj ) �
QjiWi .

Lemma 2. For players i 
= j , Qji � max[dε
j , bε

i ]. For player i, the expected wait to escape
satisfies

1

Wi



{

max[dε
1 , bε

2] i = 1,

max[dε
i , bε

1] i 
= 1.

Proof. Fix z ∈ Z1 and z′ ∈ Z1 where zi = z′
j = 1. From z′, the birth of i occurs with probability

bε
i /n. In the next period j dies with probability (1 − bε

j )/n. These two transitions lead to z.
Hence,

Qji �
bε
i

n
× 1 − bε

j

n

 bε

i ⇒ Qji � bε
i .

An alternative path is the death of j with probability dε
j /n followed by the birth of i with proba-

bility (1 − dε
i )/n, yielding Qji � dε

j . Hence Qji � max[dε
j , bε

i ]. Now, an escape from z involves
the death of i with probability dε

i /n or the birth of k 
= i with probability bε
k/n. The escape

probability is

1

n

[
dε
i +

∑
k 
=i

bε
k

]

 dε

i + max
k 
=i

bε
k 


{
max[dε

1 , bε
2] i = 1,

max[dε
i , bε

1] i 
= 1.

The expected wait until an escape from z is the inverse of the escape probability. �
Proof of Proposition 1. The stochastically stable set is in Z1 (Lemma 1). For case (i), dε

r � bε
1

implies that dε
i � bε

j for all i and j . From Lemma 2, Wi 
 1/dε
i . Compare r and j 
= r :

pr

pj

� QjrWr � max[dε
j , bε

r ]
dε
r

�
dε
j

dε
r

→ ∞ as ε → 0,

since dε
r ≺ dε

j for j 
= r . For case (ii), suppose that bε
2 � dε

1 . Compare p1 to pj for j 
= 1:

p1

p
� Qj1W1 � max[dε

j , bε
1]

max[dε, bε] 
 max[dε
j , bε

1]
bε �

bε
1

bε → ∞,

j 1 2 2 2
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where the limit follows from bε
1 � bε

2. Hence pj → 0 for j 
= 1. If instead bε
2 ≺ dε

1 , then

p1

pj

� Qj1W1 � max[dε
j , bε

1]
max[dε

1 , bε
2]


 max[dε
j , bε

1]
dε

1
�

bε
1

dε
1

→ ∞,

since bε
1 � dε

1 . Once again, pj → 0 for j 
= 1, and hence p1 → 1. For case (iii), dε
1 � bε

1 � dε
r

and M ≡ {i: bε
1 � dε

i }. Hence 1 /∈ M . First compare i ∈ M and j /∈ M :

pi

pj

� QjiWi � max[dε
j , bε

i ]
max[dε

i , bε
1]


 max[dε
j , bε

r ]
bε

1
�

dε
j

bε
1

→ ∞,

where the limit follows because j /∈ M and hence dε
j � bε

1. This ensures that pj → 0 for any
j /∈ M . Now, however, compare i ∈ M with j ∈ M , noting that i 
= 1 and j 
= 1. Applying
Lemma 2,

pi

pj

= pi

p1
× p1

pj

� Q1iWi × Qj1W1 � max[dε
1 , bε

i ]
max[dε

i , bε
1]

× max[dε
j , bε

1]
max[dε

1 , bε
2]


 dε
1

bε
1

× bε
1

dε
1

= 1.

The “
” step follows from the conditions of case (iii) and the definition of the set M . This
ensures that (pi/pj ) is bounded away from zero as ε → 0. A symmetric argument ensures that
(pj /pi) is bounded away from zero, and hence limε→0 pi ∈ (0,1) for all i ∈ M .

Finally, consider the expected wait W̄ ε until Z† is reached. Beginning from outside Z1, the
expected wait until Z1 is reached is bounded above as ε → 0. Suppose that the process begins
from z ∈ Z1 where z /∈ Z† and zj = 1 for some j . In case (i) the death of j followed by the
birth of r has probability of at least dε

j (1 − dε
r )/n2 
 dε

j � dε
r � max[dε

r , bε
1], and hence W̄ ε ≺

1/max[dε
r , bε

1]. For case (ii) the death of j followed by the birth of 1 has probability of at least
dε
j (1 − dε

1)/n2 
 dε
j � dε

r and so W̄ ε � 1/dε
r . Alternatively, the birth of 1 followed by the death

of j leads to W̄ ε ≺ 1/bε
1. Combining these two possibilities, W̄ ε � 1/max[dε

r , bε
1]. Finally, for

case (iii), the same logic leads to W̄ ε � 1/dε
j for j /∈ M . However, dε

j � dε
r and dε

j � bε
1 for

j /∈ M , and hence W̄ ε ≺ 1/max[dε
r , bε

1]. �
Given the death probabilities d ≡ {dε

i }ni=1, the most reliable player r satisfies dε
i � dε

r for

i 
= r . For a new permutation d̂ ≡ {d̂ε
i }ni=1 write r̂ for the most reliable player, and note that

dε
r = dε

r̂
.

Proof of Proposition 2. If dε
r � bε

1 then (Proposition 1) the unique activist is r . Player r is the
most reliable and so Or1(d) = 1. Under the permutation d̂ , dε

r̂
= dε

r � bε
1 = b̂ε

1, and so the unique

activist is r̂ . If r < r̂ then Or1(d̂) = 0 < Or1(d) contradicts the assumption that d̂ is an order-
improving permutation of d . Hence r̂ � r , and the unique activist is (weakly) more enthusiastic.

If bε
1 � dε

1 then (Proposition 1) player 1 is the unique activist. Suppose that player 1 is the yth
most reliable, so that O1y(d) = 1. d̂ is an order-improving permutation of d and so O1y(d̂) � 1.
Hence in this new permutation player 1 must be one of the y most reliable players. Hence d̂ε

1 �
dε

1 ≺ bε
1 = b̂ε

1, and player 1 remains the unique activist; trivially, the activist is weakly more
enthusiastic.

If dε
1 � bε

1 � dε
r then (Proposition 1) all members of M ≡ {i: bε

1 � dε
i } are activists. Note that

1 /∈ M . Under the new permutation d̂ε
r̂

= dε
r ≺ bε

1 = b̂ε
1 and hence case (i) of Proposition 1 cannot

apply. If case (ii) applies, then the most enthusiastic player is the new unique activist, and the
claim of the proposition holds. The remaining situation is when case (iii) continues to apply. The
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new activists are members of M̂ ≡ {i | bε
1 � d̂ε

i }; note that M and M̂ have the same cardinality y.
They consist of the y most reliable players; hence M = {i: dε

i � dε
(y)} and M̂ = {i: d̂ε

i � dε
(y)}.

The proposition’s claim holds if
∑n

i=j I[i ∈ M] �
∑n

i=j I[i ∈ M̂] for all j . Since M and

M̂ have the same cardinality, this inequality automatically holds (as an equality) for j = 1. For
j > 1, it holds if and only if

∑j−1
i=1 I[i ∈ M] �

∑j−1
i=1 I[i ∈ M̂], or equivalently

j−1∑
i=1

I
[
dε
i � dε

(y)

]
�

j−1∑
i=1

I
[
d̂ε
i � dε

(y)

]
.

This last inequality is equivalent to Oxy(d) � Oxy(d̂) for x = j − 1. This holds by assump-
tion. �
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